瓦特级硅光子光学高功率放大器

IF 32.3 1区 物理与天体物理 Q1 OPTICS
Neetesh Singh, Jan Lorenzen, Kai Wang, Mahmoud A. Gaafar, Milan Sinobad, Henry Francis, Marvin Edelmann, Michael Geiselmann, Tobias Herr, Sonia M. Garcia-Blanco, Franz X. Kärtner
{"title":"瓦特级硅光子光学高功率放大器","authors":"Neetesh Singh, Jan Lorenzen, Kai Wang, Mahmoud A. Gaafar, Milan Sinobad, Henry Francis, Marvin Edelmann, Michael Geiselmann, Tobias Herr, Sonia M. Garcia-Blanco, Franz X. Kärtner","doi":"10.1038/s41566-024-01587-9","DOIUrl":null,"url":null,"abstract":"High-power amplifiers are critical components in optical systems spanning from long-range optical sensing and optical communication systems to micromachining and medical surgery. Today, integrated photonics with its promise of large reductions in size, weight and cost cannot be used in these applications, owing to the lack of on-chip high-power amplifiers. Integrated devices severely lack in output power owing to their small size, which limits their energy storage capacity. For the past two decades, large mode area (LMA) technology has played a disruptive role in fibre amplifiers, enabling a dramatic increase of output power and energy by orders of magnitude. Owing to the ability of LMA fibres to support significantly larger optical modes, the energy storage and power handling capabilities of LMA fibres have significantly increased. Therefore, an LMA device on an integrated platform can play a similar role in power and energy scaling of integrated devices. In this work, we demonstrate LMA waveguide-based watt-class high-power amplifiers in silicon photonics with an on-chip output power exceeding ~1 W within a footprint of only ~4.4 mm2. The power achieved is comparable and even surpasses that of many fibre-based amplifiers. We believe that this work has the potential to radically change the integrated photonics application landscape, allowing power levels previously unimaginable from an integrated device to replace much of today’s benchtop systems. Moreover, mass producibility, reduced size, weight and cost will enable yet unforeseen applications of laser technology. A CMOS-compatible watt-class power amplifier based on large-mode waveguide technology is realized with an on-chip output power reaching ~1 W within a footprint of ~4 mm2, enabling integrated photonics to tackle true systems level integration.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"19 3","pages":"307-314"},"PeriodicalIF":32.3000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41566-024-01587-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Watt-class silicon photonics-based optical high-power amplifier\",\"authors\":\"Neetesh Singh, Jan Lorenzen, Kai Wang, Mahmoud A. Gaafar, Milan Sinobad, Henry Francis, Marvin Edelmann, Michael Geiselmann, Tobias Herr, Sonia M. Garcia-Blanco, Franz X. Kärtner\",\"doi\":\"10.1038/s41566-024-01587-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-power amplifiers are critical components in optical systems spanning from long-range optical sensing and optical communication systems to micromachining and medical surgery. Today, integrated photonics with its promise of large reductions in size, weight and cost cannot be used in these applications, owing to the lack of on-chip high-power amplifiers. Integrated devices severely lack in output power owing to their small size, which limits their energy storage capacity. For the past two decades, large mode area (LMA) technology has played a disruptive role in fibre amplifiers, enabling a dramatic increase of output power and energy by orders of magnitude. Owing to the ability of LMA fibres to support significantly larger optical modes, the energy storage and power handling capabilities of LMA fibres have significantly increased. Therefore, an LMA device on an integrated platform can play a similar role in power and energy scaling of integrated devices. In this work, we demonstrate LMA waveguide-based watt-class high-power amplifiers in silicon photonics with an on-chip output power exceeding ~1 W within a footprint of only ~4.4 mm2. The power achieved is comparable and even surpasses that of many fibre-based amplifiers. We believe that this work has the potential to radically change the integrated photonics application landscape, allowing power levels previously unimaginable from an integrated device to replace much of today’s benchtop systems. Moreover, mass producibility, reduced size, weight and cost will enable yet unforeseen applications of laser technology. A CMOS-compatible watt-class power amplifier based on large-mode waveguide technology is realized with an on-chip output power reaching ~1 W within a footprint of ~4 mm2, enabling integrated photonics to tackle true systems level integration.\",\"PeriodicalId\":18926,\"journal\":{\"name\":\"Nature Photonics\",\"volume\":\"19 3\",\"pages\":\"307-314\"},\"PeriodicalIF\":32.3000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41566-024-01587-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s41566-024-01587-9\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41566-024-01587-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

高功率放大器是光学系统的关键部件,从远程光传感、光通信系统到微加工和医疗外科。如今,由于缺乏片上高功率放大器,集成光子学虽然有望大幅减小尺寸、重量和成本,但却无法用于这些应用。集成器件由于体积小,严重缺乏输出功率,限制了其储能能力。在过去的二十年里,大模区(LMA)技术在光纤放大器中发挥了颠覆性的作用,使输出功率和能量以数量级大幅增加。由于LMA光纤能够支持更大的光模式,LMA光纤的能量存储和功率处理能力显著提高。因此,集成平台上的LMA器件可以在集成器件的功率和能量缩放中发挥类似的作用。在这项工作中,我们展示了基于LMA波导的瓦级硅光子学高功率放大器,其片上输出功率超过1w,占地面积仅为~4.4 mm2。所获得的功率是相当的,甚至超过了许多基于光纤的放大器。我们相信,这项工作有可能从根本上改变集成光子学的应用前景,使以前难以想象的集成设备的功率水平取代今天的大部分台式系统。此外,大规模生产、尺寸、重量和成本的减小将使激光技术的应用成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Watt-class silicon photonics-based optical high-power amplifier

Watt-class silicon photonics-based optical high-power amplifier

Watt-class silicon photonics-based optical high-power amplifier
High-power amplifiers are critical components in optical systems spanning from long-range optical sensing and optical communication systems to micromachining and medical surgery. Today, integrated photonics with its promise of large reductions in size, weight and cost cannot be used in these applications, owing to the lack of on-chip high-power amplifiers. Integrated devices severely lack in output power owing to their small size, which limits their energy storage capacity. For the past two decades, large mode area (LMA) technology has played a disruptive role in fibre amplifiers, enabling a dramatic increase of output power and energy by orders of magnitude. Owing to the ability of LMA fibres to support significantly larger optical modes, the energy storage and power handling capabilities of LMA fibres have significantly increased. Therefore, an LMA device on an integrated platform can play a similar role in power and energy scaling of integrated devices. In this work, we demonstrate LMA waveguide-based watt-class high-power amplifiers in silicon photonics with an on-chip output power exceeding ~1 W within a footprint of only ~4.4 mm2. The power achieved is comparable and even surpasses that of many fibre-based amplifiers. We believe that this work has the potential to radically change the integrated photonics application landscape, allowing power levels previously unimaginable from an integrated device to replace much of today’s benchtop systems. Moreover, mass producibility, reduced size, weight and cost will enable yet unforeseen applications of laser technology. A CMOS-compatible watt-class power amplifier based on large-mode waveguide technology is realized with an on-chip output power reaching ~1 W within a footprint of ~4 mm2, enabling integrated photonics to tackle true systems level integration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Photonics
Nature Photonics 物理-光学
CiteScore
54.20
自引率
1.70%
发文量
158
审稿时长
12 months
期刊介绍: Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection. The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays. In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信