{"title":"具有疏水内核的软颗粒的扩散电泳:半分析研究","authors":"Partha Sarathi Majee, Hiroyuki Ohshima","doi":"10.1021/acs.langmuir.4c04525","DOIUrl":null,"url":null,"abstract":"The current study deals with a theoretical analysis of diffusiophoresis of a soft particle, consisting of a hydrophobic charged rigid core coated with an ion- and fluid-penetrable charged polymer layer suspending in an electrolyte medium in reaction to an applied concentration gradient. The inner core’s hydrophobicity is assumed to be characterized by a surface-charge-dependent slip length parameter. Based on a weak particle charge consideration, the governing equations describing the flow phenomena are solved theoretically to deduce a semianalytic general diffusiophoretic mobility expression applied to an arbitrary Debye layer thickness. A closed-form analytic solution is also obtained, which applies to a thin Debye length and low permeable porous layer. The impact of the charge-dependent wettability of the rigid core on the particle’s diffusiophoretic motion is analyzed. We found that the inner core’s hydrophobicity profoundly influences the particle mobility at a thicker Debye layer with a constant surface charge density when the chemiphoresis and electrophoresis components assist each other. At a fixed ζ-potential, the effect of the hydrophobic core is substantial for a thinner Debye length. In addition, with a critical selection of core and polymer layer charges, mobility reversal is demonstrated by modulating the salt concentration and slip length parameters.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"5 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Diffusiophoresis of a Soft Particle with a Hydrophobic Inner Core: A Semianalytical Study\",\"authors\":\"Partha Sarathi Majee, Hiroyuki Ohshima\",\"doi\":\"10.1021/acs.langmuir.4c04525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current study deals with a theoretical analysis of diffusiophoresis of a soft particle, consisting of a hydrophobic charged rigid core coated with an ion- and fluid-penetrable charged polymer layer suspending in an electrolyte medium in reaction to an applied concentration gradient. The inner core’s hydrophobicity is assumed to be characterized by a surface-charge-dependent slip length parameter. Based on a weak particle charge consideration, the governing equations describing the flow phenomena are solved theoretically to deduce a semianalytic general diffusiophoretic mobility expression applied to an arbitrary Debye layer thickness. A closed-form analytic solution is also obtained, which applies to a thin Debye length and low permeable porous layer. The impact of the charge-dependent wettability of the rigid core on the particle’s diffusiophoretic motion is analyzed. We found that the inner core’s hydrophobicity profoundly influences the particle mobility at a thicker Debye layer with a constant surface charge density when the chemiphoresis and electrophoresis components assist each other. At a fixed ζ-potential, the effect of the hydrophobic core is substantial for a thinner Debye length. In addition, with a critical selection of core and polymer layer charges, mobility reversal is demonstrated by modulating the salt concentration and slip length parameters.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c04525\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04525","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
On Diffusiophoresis of a Soft Particle with a Hydrophobic Inner Core: A Semianalytical Study
The current study deals with a theoretical analysis of diffusiophoresis of a soft particle, consisting of a hydrophobic charged rigid core coated with an ion- and fluid-penetrable charged polymer layer suspending in an electrolyte medium in reaction to an applied concentration gradient. The inner core’s hydrophobicity is assumed to be characterized by a surface-charge-dependent slip length parameter. Based on a weak particle charge consideration, the governing equations describing the flow phenomena are solved theoretically to deduce a semianalytic general diffusiophoretic mobility expression applied to an arbitrary Debye layer thickness. A closed-form analytic solution is also obtained, which applies to a thin Debye length and low permeable porous layer. The impact of the charge-dependent wettability of the rigid core on the particle’s diffusiophoretic motion is analyzed. We found that the inner core’s hydrophobicity profoundly influences the particle mobility at a thicker Debye layer with a constant surface charge density when the chemiphoresis and electrophoresis components assist each other. At a fixed ζ-potential, the effect of the hydrophobic core is substantial for a thinner Debye length. In addition, with a critical selection of core and polymer layer charges, mobility reversal is demonstrated by modulating the salt concentration and slip length parameters.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).