在多金属氧酸盐蚀刻Cu2O上原位生长金属-有机层以促进高稳定性的CO2还原

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yu-Jie Wang, Xin Cheng, Dr. Na-Na Ma, Wei-Yi Cheng, Peng Zhang, Prof. Fang Luo, Prof. Wen-Xiong Shi, Prof. Shuang Yao, Prof. Tong-Bu Lu, Prof. Zhi-Ming Zhang
{"title":"在多金属氧酸盐蚀刻Cu2O上原位生长金属-有机层以促进高稳定性的CO2还原","authors":"Yu-Jie Wang,&nbsp;Xin Cheng,&nbsp;Dr. Na-Na Ma,&nbsp;Wei-Yi Cheng,&nbsp;Peng Zhang,&nbsp;Prof. Fang Luo,&nbsp;Prof. Wen-Xiong Shi,&nbsp;Prof. Shuang Yao,&nbsp;Prof. Tong-Bu Lu,&nbsp;Prof. Zhi-Ming Zhang","doi":"10.1002/anie.202423204","DOIUrl":null,"url":null,"abstract":"<p>Low-cost Cu<sub>2</sub>O with a suitable band gap holds great potential for solar utilization. However severe photocorrosion and weak CO<sub>2</sub> capture capability have significantly hindered their application in artificial photosynthesis. Herein, polyoxometalate (POM)-etching and in situ growth of metal–organic framework (MOF) can simultaneously incorporate electron-sponge and HKUST protective layer into Cu<sub>2</sub>O. The resulting ternary composites Cu<sub>2</sub>O@POM@HKUST-n (POM=PMo<sub>12</sub>O<sub>40</sub> and PW<sub>12</sub>O<sub>40</sub>) with dual hetero-interfaces can efficiently convert CO<sub>2</sub> to HCOOH with 5226 μmol g<sup>−1</sup> yield, over 5 and 55 times higher than that of Cu<sub>2</sub>O (1010 μmol g<sup>−1</sup>) and Cu<sub>2</sub>O@HKUST (95.02 μmol g<sup>−1</sup>). In situ XPS and DFT studies reveal that Cu mainly existed in the form of Cu<sub>2</sub>O and Cu-MOF, while a unique Cu<sup>x+</sup> (1&lt;x≤2) surface layer formed upon the Cu<sub>2</sub>O matrix surrounding POMs for CO<sub>2</sub> absorption and activation. Systematic investigations demonstrate that the electron-sponge can efficiently capture electrons from excited Cu<sub>2</sub>O to promote the generation of a Cu<sup>x+</sup> surface layer, while the closely surface-coating metal-organic layer can act as protective layer and CO<sub>2</sub> adsorbent. This dual function concurrently contributes to promote photocatalysis and prevent Cu<sub>2</sub>O degradation. Remarkably, the composites exhibit much enhanced photochemical stability and can be used for over 60 h without noticeable activity loss.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 13","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Situ Growth of Metal-Organic Layer on Polyoxometalate-etching Cu2O to Boost CO2 Reduction with High Stability\",\"authors\":\"Yu-Jie Wang,&nbsp;Xin Cheng,&nbsp;Dr. Na-Na Ma,&nbsp;Wei-Yi Cheng,&nbsp;Peng Zhang,&nbsp;Prof. Fang Luo,&nbsp;Prof. Wen-Xiong Shi,&nbsp;Prof. Shuang Yao,&nbsp;Prof. Tong-Bu Lu,&nbsp;Prof. Zhi-Ming Zhang\",\"doi\":\"10.1002/anie.202423204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Low-cost Cu<sub>2</sub>O with a suitable band gap holds great potential for solar utilization. However severe photocorrosion and weak CO<sub>2</sub> capture capability have significantly hindered their application in artificial photosynthesis. Herein, polyoxometalate (POM)-etching and in situ growth of metal–organic framework (MOF) can simultaneously incorporate electron-sponge and HKUST protective layer into Cu<sub>2</sub>O. The resulting ternary composites Cu<sub>2</sub>O@POM@HKUST-n (POM=PMo<sub>12</sub>O<sub>40</sub> and PW<sub>12</sub>O<sub>40</sub>) with dual hetero-interfaces can efficiently convert CO<sub>2</sub> to HCOOH with 5226 μmol g<sup>−1</sup> yield, over 5 and 55 times higher than that of Cu<sub>2</sub>O (1010 μmol g<sup>−1</sup>) and Cu<sub>2</sub>O@HKUST (95.02 μmol g<sup>−1</sup>). In situ XPS and DFT studies reveal that Cu mainly existed in the form of Cu<sub>2</sub>O and Cu-MOF, while a unique Cu<sup>x+</sup> (1&lt;x≤2) surface layer formed upon the Cu<sub>2</sub>O matrix surrounding POMs for CO<sub>2</sub> absorption and activation. Systematic investigations demonstrate that the electron-sponge can efficiently capture electrons from excited Cu<sub>2</sub>O to promote the generation of a Cu<sup>x+</sup> surface layer, while the closely surface-coating metal-organic layer can act as protective layer and CO<sub>2</sub> adsorbent. This dual function concurrently contributes to promote photocatalysis and prevent Cu<sub>2</sub>O degradation. Remarkably, the composites exhibit much enhanced photochemical stability and can be used for over 60 h without noticeable activity loss.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 13\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202423204\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202423204","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

具有合适带隙的低成本Cu2O具有巨大的太阳能利用潜力。然而,严重的光腐蚀和较弱的CO2捕获能力严重阻碍了其在人工光合作用中的应用。在此,多金属氧酸盐(POM)蚀刻和金属有机骨架(MOF)的原位生长可以同时将电子海绵和科大保护层结合到Cu2O中。所得到的具有双异界面的三元复合材料Cu2O@POM@HKUST‐n (POM = PMo12O40和PW12O40)可以有效地将CO2转化为HCOOH,产率为5226µmol g‐1,比Cu2O(1010µmol g‐1)和Cu2O@HKUST(95.02µmol g‐1)分别高出5倍和55倍。原位XPS和DFT研究表明,Cu主要以Cu2O和Cu - MOF的形式存在,而Cux+ (1<;x≤2)在pom周围的Cu2O基体上形成一层表面层,用于吸收和活化CO2。系统研究表明,电子海绵可以有效地捕获受激发Cu2O中的电子,促进Cux+表面层的生成,而紧密的表面涂层金属有机层可以作为保护层和CO2吸附剂。这种双重功能同时有助于促进光催化和防止Cu2O降解。值得注意的是,三元复合材料表现出更强的光化学稳定性,可以使用超过60小时而没有明显的活性损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In Situ Growth of Metal-Organic Layer on Polyoxometalate-etching Cu2O to Boost CO2 Reduction with High Stability

In Situ Growth of Metal-Organic Layer on Polyoxometalate-etching Cu2O to Boost CO2 Reduction with High Stability

Low-cost Cu2O with a suitable band gap holds great potential for solar utilization. However severe photocorrosion and weak CO2 capture capability have significantly hindered their application in artificial photosynthesis. Herein, polyoxometalate (POM)-etching and in situ growth of metal–organic framework (MOF) can simultaneously incorporate electron-sponge and HKUST protective layer into Cu2O. The resulting ternary composites Cu2O@POM@HKUST-n (POM=PMo12O40 and PW12O40) with dual hetero-interfaces can efficiently convert CO2 to HCOOH with 5226 μmol g−1 yield, over 5 and 55 times higher than that of Cu2O (1010 μmol g−1) and Cu2O@HKUST (95.02 μmol g−1). In situ XPS and DFT studies reveal that Cu mainly existed in the form of Cu2O and Cu-MOF, while a unique Cux+ (1<x≤2) surface layer formed upon the Cu2O matrix surrounding POMs for CO2 absorption and activation. Systematic investigations demonstrate that the electron-sponge can efficiently capture electrons from excited Cu2O to promote the generation of a Cux+ surface layer, while the closely surface-coating metal-organic layer can act as protective layer and CO2 adsorbent. This dual function concurrently contributes to promote photocatalysis and prevent Cu2O degradation. Remarkably, the composites exhibit much enhanced photochemical stability and can be used for over 60 h without noticeable activity loss.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信