Björn Altenburger, Joachim Fritzsche, Christoph Langhammer
{"title":"单个纳米流体通道内从飞升到升体积的液体溶质的可见光谱学","authors":"Björn Altenburger, Joachim Fritzsche, Christoph Langhammer","doi":"10.1021/acsnano.4c15878","DOIUrl":null,"url":null,"abstract":"UV–vis spectroscopy is a workhorse in analytical chemistry that finds application in life science, organic synthesis, and energy technologies like photocatalysis. In its traditional implementation with cuvettes, it requires sample volumes in the milliliter range. Here, we show how nanofluidic scattering spectroscopy (NSS), which measures visible light scattered from a single nanochannel in a spectrally resolved way, can reduce this sample volume to the attoliter range for solute concentrations in the mM regime, which corresponds to as few as 10<sup>5</sup> probed molecules. The connection of the nanochannel to a microfluidic in-and-outlet system enables such measurements in continuous flow conditions, and the integrated online optical reference system ensures their long-term stability. On the examples of the nonabsorbing solutes NaCl and H<sub>2</sub>O<sub>2</sub> and the dyes Brilliant Blue, Allura Red, and Fluorescein, we demonstrate that spectral fingerprints can be obtained with good accuracy and that solute concentrations inside the nanochannel can be determined based on NSS-spectra. Furthermore, by applying a reverse Kramers–Kronig transformation to NSS-spectra, we show that the molar extinction coefficient of the dye solutes can be extracted in good agreement with the literature values. These results thus advertise NSS as a versatile tool for the spectroscopic analysis of solutes in situations where nanoscopic sample volumes, as well as continuous flow measurements are critical, e.g., in single particle catalysis or nanoscale flow cytometry.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"81 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visible Light Spectroscopy of Liquid Solutes from Femto- to Attoliter Volumes Inside a Single Nanofluidic Channel\",\"authors\":\"Björn Altenburger, Joachim Fritzsche, Christoph Langhammer\",\"doi\":\"10.1021/acsnano.4c15878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"UV–vis spectroscopy is a workhorse in analytical chemistry that finds application in life science, organic synthesis, and energy technologies like photocatalysis. In its traditional implementation with cuvettes, it requires sample volumes in the milliliter range. Here, we show how nanofluidic scattering spectroscopy (NSS), which measures visible light scattered from a single nanochannel in a spectrally resolved way, can reduce this sample volume to the attoliter range for solute concentrations in the mM regime, which corresponds to as few as 10<sup>5</sup> probed molecules. The connection of the nanochannel to a microfluidic in-and-outlet system enables such measurements in continuous flow conditions, and the integrated online optical reference system ensures their long-term stability. On the examples of the nonabsorbing solutes NaCl and H<sub>2</sub>O<sub>2</sub> and the dyes Brilliant Blue, Allura Red, and Fluorescein, we demonstrate that spectral fingerprints can be obtained with good accuracy and that solute concentrations inside the nanochannel can be determined based on NSS-spectra. Furthermore, by applying a reverse Kramers–Kronig transformation to NSS-spectra, we show that the molar extinction coefficient of the dye solutes can be extracted in good agreement with the literature values. These results thus advertise NSS as a versatile tool for the spectroscopic analysis of solutes in situations where nanoscopic sample volumes, as well as continuous flow measurements are critical, e.g., in single particle catalysis or nanoscale flow cytometry.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c15878\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c15878","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Visible Light Spectroscopy of Liquid Solutes from Femto- to Attoliter Volumes Inside a Single Nanofluidic Channel
UV–vis spectroscopy is a workhorse in analytical chemistry that finds application in life science, organic synthesis, and energy technologies like photocatalysis. In its traditional implementation with cuvettes, it requires sample volumes in the milliliter range. Here, we show how nanofluidic scattering spectroscopy (NSS), which measures visible light scattered from a single nanochannel in a spectrally resolved way, can reduce this sample volume to the attoliter range for solute concentrations in the mM regime, which corresponds to as few as 105 probed molecules. The connection of the nanochannel to a microfluidic in-and-outlet system enables such measurements in continuous flow conditions, and the integrated online optical reference system ensures their long-term stability. On the examples of the nonabsorbing solutes NaCl and H2O2 and the dyes Brilliant Blue, Allura Red, and Fluorescein, we demonstrate that spectral fingerprints can be obtained with good accuracy and that solute concentrations inside the nanochannel can be determined based on NSS-spectra. Furthermore, by applying a reverse Kramers–Kronig transformation to NSS-spectra, we show that the molar extinction coefficient of the dye solutes can be extracted in good agreement with the literature values. These results thus advertise NSS as a versatile tool for the spectroscopic analysis of solutes in situations where nanoscopic sample volumes, as well as continuous flow measurements are critical, e.g., in single particle catalysis or nanoscale flow cytometry.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.