{"title":"弹性热电池:基于生成学习设计相变合金的超高储热能力","authors":"Pengfei Dang, Jinlong Hu, Yuehui Xian, Cheng Li, Yumei Zhou, Xiangdong Ding, Jun Sun, Dezhen Xue","doi":"10.1002/adma.202412198","DOIUrl":null,"url":null,"abstract":"<p>An elastocaloric thermal battery based on generative learning-designed phase-change alloys is developed to facilitate the efficient recycling of low-temperature waste heat. This battery stores thermal energy as latent heat in a phase-change alloy and releases it on demand through applied stress at ambient temperature. Alloy compositions and corresponding processing parameters, tailored to desired transformation characteristics, are efficiently discovered through a generative learning-enabled inverse design framework, which converts the hand-drawn target heat flow curve into tangible compositional and processing designs. The designed battery achieves an ultrahigh figure of merit for heat storage capacity, surpassing existing thermal batteries, and boasts a work-to-heat efficiency exceeding 9. This opens up exciting possibilities for manipulating thermal energy in diverse applications such as low-temperature waste heat recycling, solar thermal collection, and heat management in electric vehicles and data center facilities. The inverse design framework promises to expedite the development of various materials with tailored property curves.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 8","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elastocaloric Thermal Battery: Ultrahigh Heat-Storage Capacity Based on Generative Learning-Designed Phase-Change Alloys\",\"authors\":\"Pengfei Dang, Jinlong Hu, Yuehui Xian, Cheng Li, Yumei Zhou, Xiangdong Ding, Jun Sun, Dezhen Xue\",\"doi\":\"10.1002/adma.202412198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An elastocaloric thermal battery based on generative learning-designed phase-change alloys is developed to facilitate the efficient recycling of low-temperature waste heat. This battery stores thermal energy as latent heat in a phase-change alloy and releases it on demand through applied stress at ambient temperature. Alloy compositions and corresponding processing parameters, tailored to desired transformation characteristics, are efficiently discovered through a generative learning-enabled inverse design framework, which converts the hand-drawn target heat flow curve into tangible compositional and processing designs. The designed battery achieves an ultrahigh figure of merit for heat storage capacity, surpassing existing thermal batteries, and boasts a work-to-heat efficiency exceeding 9. This opens up exciting possibilities for manipulating thermal energy in diverse applications such as low-temperature waste heat recycling, solar thermal collection, and heat management in electric vehicles and data center facilities. The inverse design framework promises to expedite the development of various materials with tailored property curves.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 8\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202412198\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202412198","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Elastocaloric Thermal Battery: Ultrahigh Heat-Storage Capacity Based on Generative Learning-Designed Phase-Change Alloys
An elastocaloric thermal battery based on generative learning-designed phase-change alloys is developed to facilitate the efficient recycling of low-temperature waste heat. This battery stores thermal energy as latent heat in a phase-change alloy and releases it on demand through applied stress at ambient temperature. Alloy compositions and corresponding processing parameters, tailored to desired transformation characteristics, are efficiently discovered through a generative learning-enabled inverse design framework, which converts the hand-drawn target heat flow curve into tangible compositional and processing designs. The designed battery achieves an ultrahigh figure of merit for heat storage capacity, surpassing existing thermal batteries, and boasts a work-to-heat efficiency exceeding 9. This opens up exciting possibilities for manipulating thermal energy in diverse applications such as low-temperature waste heat recycling, solar thermal collection, and heat management in electric vehicles and data center facilities. The inverse design framework promises to expedite the development of various materials with tailored property curves.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.