Jianghai Liao , Xinyu Wang , Hangjia Wang , Mingcai Hou , Sizhuo Zhou , Zeming Shi , Yuxiang Zhan , Shijun Ni , Ruilin Wang
{"title":"丘陵地形表土中多环芳烃(PAHs)分布的地理影响——以重庆市为例","authors":"Jianghai Liao , Xinyu Wang , Hangjia Wang , Mingcai Hou , Sizhuo Zhou , Zeming Shi , Yuxiang Zhan , Shijun Ni , Ruilin Wang","doi":"10.1016/j.jhazmat.2024.137085","DOIUrl":null,"url":null,"abstract":"<div><div>The distribution and transport of polycyclic aromatic hydrocarbons (PAHs) in urban environments are influenced by both anthropogenic sources and natural landscape features. While previous research has primarily focused on human activities as drivers of PAH pollution, the role of terrain—especially in cities with complex topographies—remains underexplored. To investigate the effect of terrain features on PAH distribution and transport, we analyzed topsoil samples evenly distributed in Chongqing, a city with hilly terrain (elevation: 48–2300 m). PAH concentrations (Σ<sub>16</sub>PAHs) ranged from 170.3 to 4426.4 ng/g (mean: 688.3 ng/g). Low-molecular-weight (LMW) PAHs were the most prevalent pollutants, with high-molecular-weight (HMW) PAHs predominantly accumulating in valleys formed by the hilly terrain. Multivariate receptor model methods identified fossil fuel combustion as the primary source of PAHs. Redundancy Analysis (RDA) revealed that elevation changes in the terrain significantly affect PAH accumulation, amplifying the influence of human activities. Integrating principal component analysis multiple linear regression (PCA-MLR) with ARCGIS kriging interpolation provided a novel approach to visualizing source apportionment and mapping the spatial distribution of PAH pollution. These findings highlight that hilly terrain plays a significant role in PAH distribution, with valleys acting as key sinks and obstructing transport, particularly in urbanized areas. Combustion sources tend to accumulate near their origin, while petroleum-derived PAHs are transported over longer distances and accumulate in areas with significant elevation changes. The TEQ<sub>BaP</sub> and optimized ILCR model, with a regional cancer risk of 3.69 × 10⁻⁵, indicate a low overall health risk. Most health risks arise from oral ingestion and dermal exposure, with risk increasing with age.</div></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"487 ","pages":"Article 137085"},"PeriodicalIF":11.3000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geographical impact on the distribution of polycyclic aromatic hydrocarbons (PAHs) in hilly terrain topsoil: A case study at Chongqing, SW, China\",\"authors\":\"Jianghai Liao , Xinyu Wang , Hangjia Wang , Mingcai Hou , Sizhuo Zhou , Zeming Shi , Yuxiang Zhan , Shijun Ni , Ruilin Wang\",\"doi\":\"10.1016/j.jhazmat.2024.137085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The distribution and transport of polycyclic aromatic hydrocarbons (PAHs) in urban environments are influenced by both anthropogenic sources and natural landscape features. While previous research has primarily focused on human activities as drivers of PAH pollution, the role of terrain—especially in cities with complex topographies—remains underexplored. To investigate the effect of terrain features on PAH distribution and transport, we analyzed topsoil samples evenly distributed in Chongqing, a city with hilly terrain (elevation: 48–2300 m). PAH concentrations (Σ<sub>16</sub>PAHs) ranged from 170.3 to 4426.4 ng/g (mean: 688.3 ng/g). Low-molecular-weight (LMW) PAHs were the most prevalent pollutants, with high-molecular-weight (HMW) PAHs predominantly accumulating in valleys formed by the hilly terrain. Multivariate receptor model methods identified fossil fuel combustion as the primary source of PAHs. Redundancy Analysis (RDA) revealed that elevation changes in the terrain significantly affect PAH accumulation, amplifying the influence of human activities. Integrating principal component analysis multiple linear regression (PCA-MLR) with ARCGIS kriging interpolation provided a novel approach to visualizing source apportionment and mapping the spatial distribution of PAH pollution. These findings highlight that hilly terrain plays a significant role in PAH distribution, with valleys acting as key sinks and obstructing transport, particularly in urbanized areas. Combustion sources tend to accumulate near their origin, while petroleum-derived PAHs are transported over longer distances and accumulate in areas with significant elevation changes. The TEQ<sub>BaP</sub> and optimized ILCR model, with a regional cancer risk of 3.69 × 10⁻⁵, indicate a low overall health risk. Most health risks arise from oral ingestion and dermal exposure, with risk increasing with age.</div></div>\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":\"487 \",\"pages\":\"Article 137085\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304389424036665\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389424036665","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Geographical impact on the distribution of polycyclic aromatic hydrocarbons (PAHs) in hilly terrain topsoil: A case study at Chongqing, SW, China
The distribution and transport of polycyclic aromatic hydrocarbons (PAHs) in urban environments are influenced by both anthropogenic sources and natural landscape features. While previous research has primarily focused on human activities as drivers of PAH pollution, the role of terrain—especially in cities with complex topographies—remains underexplored. To investigate the effect of terrain features on PAH distribution and transport, we analyzed topsoil samples evenly distributed in Chongqing, a city with hilly terrain (elevation: 48–2300 m). PAH concentrations (Σ16PAHs) ranged from 170.3 to 4426.4 ng/g (mean: 688.3 ng/g). Low-molecular-weight (LMW) PAHs were the most prevalent pollutants, with high-molecular-weight (HMW) PAHs predominantly accumulating in valleys formed by the hilly terrain. Multivariate receptor model methods identified fossil fuel combustion as the primary source of PAHs. Redundancy Analysis (RDA) revealed that elevation changes in the terrain significantly affect PAH accumulation, amplifying the influence of human activities. Integrating principal component analysis multiple linear regression (PCA-MLR) with ARCGIS kriging interpolation provided a novel approach to visualizing source apportionment and mapping the spatial distribution of PAH pollution. These findings highlight that hilly terrain plays a significant role in PAH distribution, with valleys acting as key sinks and obstructing transport, particularly in urbanized areas. Combustion sources tend to accumulate near their origin, while petroleum-derived PAHs are transported over longer distances and accumulate in areas with significant elevation changes. The TEQBaP and optimized ILCR model, with a regional cancer risk of 3.69 × 10⁻⁵, indicate a low overall health risk. Most health risks arise from oral ingestion and dermal exposure, with risk increasing with age.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.