通过合理构建Bi2WO6表面活性位点调控COOH中间体用于太阳能驱动的CO2-to-CO生产

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nguyen Quoc Thang, Amr Sabbah, Raghunath Putikam, Chih-Yang Huang, Tsai-Yu Lin, Mahmoud Kamal Hussien, Heng-Liang Wu, Ming-Chang Lin, Chih-Hao Lee, Kuei-Hsien Chen, Li-Chyong Chen
{"title":"通过合理构建Bi2WO6表面活性位点调控COOH中间体用于太阳能驱动的CO2-to-CO生产","authors":"Nguyen Quoc Thang,&nbsp;Amr Sabbah,&nbsp;Raghunath Putikam,&nbsp;Chih-Yang Huang,&nbsp;Tsai-Yu Lin,&nbsp;Mahmoud Kamal Hussien,&nbsp;Heng-Liang Wu,&nbsp;Ming-Chang Lin,&nbsp;Chih-Hao Lee,&nbsp;Kuei-Hsien Chen,&nbsp;Li-Chyong Chen","doi":"10.1002/adfm.202423751","DOIUrl":null,"url":null,"abstract":"<p>Solar-driven CO<sub>2</sub> reduction holds great promise for sustainable energy, yet the role of atomic active sites in governing intermediate formation and conversion remains poorly understood. Herein, a synergistic strategy using Ni single atoms (SAs) and surface oxygen vacancies (O<sub>v</sub>) is reported to regulate the CO<sub>2</sub> reduction pathway on the Bi<sub>2</sub>WO<sub>6</sub> photocatalyst. Combining in-situ techniques and theoretical modeling, the reaction mechanism and the structure-activity relationship is elucidated. In-situ X-ray absorption spectroscopy identifies Bi and Ni as active sites, and in-situ diffuse reflectance infrared Fourier transform spectroscopy demonstrates that adsorption of H<sub>2</sub>O and CO<sub>2</sub> readily forms CO<sub>3</sub><sup>2−</sup> species on the O<sub>v</sub>-rich catalyst. Optimally balancing Ni SAs and O<sub>v</sub> lowers the energy barrier for the formation and dehydration of a key COOH intermediate, leading to favorable CO formation and desorption. Consequently, a superior CO production efficiency of 53.49 µmol g<sup>‒1</sup> is achieved, surpassing previous reports on Bi<sub>2</sub>WO<sub>6</sub>-based catalysts for gas-phase CO<sub>2</sub> photoreduction.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 23","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulating COOH Intermediate via Rationally Constructed Surface-Active Sites of Bi2WO6 for Solar-Driven CO2-to-CO Production\",\"authors\":\"Nguyen Quoc Thang,&nbsp;Amr Sabbah,&nbsp;Raghunath Putikam,&nbsp;Chih-Yang Huang,&nbsp;Tsai-Yu Lin,&nbsp;Mahmoud Kamal Hussien,&nbsp;Heng-Liang Wu,&nbsp;Ming-Chang Lin,&nbsp;Chih-Hao Lee,&nbsp;Kuei-Hsien Chen,&nbsp;Li-Chyong Chen\",\"doi\":\"10.1002/adfm.202423751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Solar-driven CO<sub>2</sub> reduction holds great promise for sustainable energy, yet the role of atomic active sites in governing intermediate formation and conversion remains poorly understood. Herein, a synergistic strategy using Ni single atoms (SAs) and surface oxygen vacancies (O<sub>v</sub>) is reported to regulate the CO<sub>2</sub> reduction pathway on the Bi<sub>2</sub>WO<sub>6</sub> photocatalyst. Combining in-situ techniques and theoretical modeling, the reaction mechanism and the structure-activity relationship is elucidated. In-situ X-ray absorption spectroscopy identifies Bi and Ni as active sites, and in-situ diffuse reflectance infrared Fourier transform spectroscopy demonstrates that adsorption of H<sub>2</sub>O and CO<sub>2</sub> readily forms CO<sub>3</sub><sup>2−</sup> species on the O<sub>v</sub>-rich catalyst. Optimally balancing Ni SAs and O<sub>v</sub> lowers the energy barrier for the formation and dehydration of a key COOH intermediate, leading to favorable CO formation and desorption. Consequently, a superior CO production efficiency of 53.49 µmol g<sup>‒1</sup> is achieved, surpassing previous reports on Bi<sub>2</sub>WO<sub>6</sub>-based catalysts for gas-phase CO<sub>2</sub> photoreduction.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"35 23\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202423751\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202423751","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

太阳能驱动的二氧化碳减排为可持续能源带来了巨大的希望,然而原子活性位点在控制中间体形成和转化中的作用仍然知之甚少。本文报道了一种利用Ni单原子(SAs)和表面氧空位(Ov)的协同策略来调节Bi2WO6光催化剂上的CO2还原途径。结合原位技术和理论模拟,阐明了反应机理和构效关系。原位x射线吸收光谱确定Bi和Ni为活性位点,原位漫反射红外傅立叶变换光谱表明,H2O和CO2的吸附容易在富ov催化剂上形成CO32−。最佳平衡Ni - SAs和Ov降低了关键COOH中间体形成和脱水的能垒,从而有利于CO的形成和解吸。因此,该催化剂的CO产率达到53.49µmol g-1,超过了之前报道的bi2wo6基催化剂气相CO2光还原的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Regulating COOH Intermediate via Rationally Constructed Surface-Active Sites of Bi2WO6 for Solar-Driven CO2-to-CO Production

Regulating COOH Intermediate via Rationally Constructed Surface-Active Sites of Bi2WO6 for Solar-Driven CO2-to-CO Production

Regulating COOH Intermediate via Rationally Constructed Surface-Active Sites of Bi2WO6 for Solar-Driven CO2-to-CO Production

Regulating COOH Intermediate via Rationally Constructed Surface-Active Sites of Bi2WO6 for Solar-Driven CO2-to-CO Production

Regulating COOH Intermediate via Rationally Constructed Surface-Active Sites of Bi2WO6 for Solar-Driven CO2-to-CO Production

Solar-driven CO2 reduction holds great promise for sustainable energy, yet the role of atomic active sites in governing intermediate formation and conversion remains poorly understood. Herein, a synergistic strategy using Ni single atoms (SAs) and surface oxygen vacancies (Ov) is reported to regulate the CO2 reduction pathway on the Bi2WO6 photocatalyst. Combining in-situ techniques and theoretical modeling, the reaction mechanism and the structure-activity relationship is elucidated. In-situ X-ray absorption spectroscopy identifies Bi and Ni as active sites, and in-situ diffuse reflectance infrared Fourier transform spectroscopy demonstrates that adsorption of H2O and CO2 readily forms CO32− species on the Ov-rich catalyst. Optimally balancing Ni SAs and Ov lowers the energy barrier for the formation and dehydration of a key COOH intermediate, leading to favorable CO formation and desorption. Consequently, a superior CO production efficiency of 53.49 µmol g‒1 is achieved, surpassing previous reports on Bi2WO6-based catalysts for gas-phase CO2 photoreduction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信