nanogravity 15年数据集:光谱指数的运行

Gabriella Agazie, Akash Anumarlapudi, Anne M. Archibald, Zaven Arzoumanian, Jeremy G. Baier, Paul T. Baker, Bence Bécsy, Laura Blecha, Adam Brazier, Paul R. Brook, Sarah Burke-Spolaor, J. Andrew Casey-Clyde, Maria Charisi, Shami Chatterjee, Tyler Cohen, James M. Cordes, Neil J. Cornish, Fronefield Crawford, H. Thankful Cromartie, Kathryn Crowter, Megan E. DeCesar, Paul B. Demorest, Heling Deng, Lankeswar Dey, Timothy Dolch, David Esmyol, Elizabeth C. Ferrara, William Fiore, Emmanuel Fonseca, Gabriel E. Freedman, Emiko C. Gardiner, Nate Garver-Daniels, Peter A. Gentile, Kyle A. Gersbach, Joseph Glaser, Deborah C. Good, Kayhan Gültekin, Jeffrey S. Hazboun, Ross J. Jennings, Aaron D. Johnson, Megan L. Jones, David L. Kaplan, Luke Zoltan Kelley, Matthew Kerr, Joey S. Key, Nima Laal, Michael T. Lam, William G. Lamb, Bjorn Larsen, T. Joseph W. Lazio, Natalia Lewandowska, Rafael R. Lino dos Santos, Tingting Liu, Duncan R. Lorimer, Jing Luo, Ryan S. Lynch, Chung-Pei Ma, Dustin R. Mad..
{"title":"nanogravity 15年数据集:光谱指数的运行","authors":"Gabriella Agazie, Akash Anumarlapudi, Anne M. Archibald, Zaven Arzoumanian, Jeremy G. Baier, Paul T. Baker, Bence Bécsy, Laura Blecha, Adam Brazier, Paul R. Brook, Sarah Burke-Spolaor, J. Andrew Casey-Clyde, Maria Charisi, Shami Chatterjee, Tyler Cohen, James M. Cordes, Neil J. Cornish, Fronefield Crawford, H. Thankful Cromartie, Kathryn Crowter, Megan E. DeCesar, Paul B. Demorest, Heling Deng, Lankeswar Dey, Timothy Dolch, David Esmyol, Elizabeth C. Ferrara, William Fiore, Emmanuel Fonseca, Gabriel E. Freedman, Emiko C. Gardiner, Nate Garver-Daniels, Peter A. Gentile, Kyle A. Gersbach, Joseph Glaser, Deborah C. Good, Kayhan Gültekin, Jeffrey S. Hazboun, Ross J. Jennings, Aaron D. Johnson, Megan L. Jones, David L. Kaplan, Luke Zoltan Kelley, Matthew Kerr, Joey S. Key, Nima Laal, Michael T. Lam, William G. Lamb, Bjorn Larsen, T. Joseph W. Lazio, Natalia Lewandowska, Rafael R. Lino dos Santos, Tingting Liu, Duncan R. Lorimer, Jing Luo, Ryan S. Lynch, Chung-Pei Ma, Dustin R. Mad..","doi":"10.3847/2041-8213/ad99d3","DOIUrl":null,"url":null,"abstract":"The NANOGrav 15 yr data provide compelling evidence for a stochastic gravitational-wave (GW) background at nanohertz frequencies. The simplest model-independent approach to characterizing the frequency spectrum of this signal consists of a simple power-law fit involving two parameters: an amplitude A and a spectral index γ. In this Letter, we consider the next logical step beyond this minimal spectral model, allowing for a running (i.e., logarithmic frequency dependence) of the spectral index, . We fit this running-power-law (RPL) model to the NANOGrav 15 yr data and perform a Bayesian model comparison with the minimal constant-power-law (CPL) model, which results in a 95% credible interval for the parameter β consistent with no running, , and an inconclusive Bayes factor, . We thus conclude that, at present, the minimal CPL model still suffices to adequately describe the NANOGrav signal; however, future data sets may well lead to a measurement of nonzero β. Finally, we interpret the RPL model as a description of primordial GWs generated during cosmic inflation, which allows us to combine our results with upper limits from Big Bang nucleosynthesis, the cosmic microwave background, and LIGO–Virgo–KAGRA.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The NANOGrav 15 yr Data Set: Running of the Spectral Index\",\"authors\":\"Gabriella Agazie, Akash Anumarlapudi, Anne M. Archibald, Zaven Arzoumanian, Jeremy G. Baier, Paul T. Baker, Bence Bécsy, Laura Blecha, Adam Brazier, Paul R. Brook, Sarah Burke-Spolaor, J. Andrew Casey-Clyde, Maria Charisi, Shami Chatterjee, Tyler Cohen, James M. Cordes, Neil J. Cornish, Fronefield Crawford, H. Thankful Cromartie, Kathryn Crowter, Megan E. DeCesar, Paul B. Demorest, Heling Deng, Lankeswar Dey, Timothy Dolch, David Esmyol, Elizabeth C. Ferrara, William Fiore, Emmanuel Fonseca, Gabriel E. Freedman, Emiko C. Gardiner, Nate Garver-Daniels, Peter A. Gentile, Kyle A. Gersbach, Joseph Glaser, Deborah C. Good, Kayhan Gültekin, Jeffrey S. Hazboun, Ross J. Jennings, Aaron D. Johnson, Megan L. Jones, David L. Kaplan, Luke Zoltan Kelley, Matthew Kerr, Joey S. Key, Nima Laal, Michael T. Lam, William G. Lamb, Bjorn Larsen, T. Joseph W. Lazio, Natalia Lewandowska, Rafael R. Lino dos Santos, Tingting Liu, Duncan R. Lorimer, Jing Luo, Ryan S. Lynch, Chung-Pei Ma, Dustin R. Mad..\",\"doi\":\"10.3847/2041-8213/ad99d3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The NANOGrav 15 yr data provide compelling evidence for a stochastic gravitational-wave (GW) background at nanohertz frequencies. The simplest model-independent approach to characterizing the frequency spectrum of this signal consists of a simple power-law fit involving two parameters: an amplitude A and a spectral index γ. In this Letter, we consider the next logical step beyond this minimal spectral model, allowing for a running (i.e., logarithmic frequency dependence) of the spectral index, . We fit this running-power-law (RPL) model to the NANOGrav 15 yr data and perform a Bayesian model comparison with the minimal constant-power-law (CPL) model, which results in a 95% credible interval for the parameter β consistent with no running, , and an inconclusive Bayes factor, . We thus conclude that, at present, the minimal CPL model still suffices to adequately describe the NANOGrav signal; however, future data sets may well lead to a measurement of nonzero β. Finally, we interpret the RPL model as a description of primordial GWs generated during cosmic inflation, which allows us to combine our results with upper limits from Big Bang nucleosynthesis, the cosmic microwave background, and LIGO–Virgo–KAGRA.\",\"PeriodicalId\":501814,\"journal\":{\"name\":\"The Astrophysical Journal Letters\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/2041-8213/ad99d3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ad99d3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

nanogravity 15年的数据为纳赫兹频率的随机引力波(GW)背景提供了令人信服的证据。表征该信号频谱的最简单的模型独立方法包括一个简单的幂律拟合,涉及两个参数:振幅a和谱指数γ。在这封信中,我们考虑超越这个最小谱模型的下一个逻辑步骤,允许谱指数的运行(即对数频率依赖)。我们将这种运行幂律(RPL)模型拟合到NANOGrav 15年的数据中,并与最小常数幂律(CPL)模型进行贝叶斯模型比较,结果表明参数β的可信区间为95%,与不运行一致,并且贝叶斯因子不确定。因此,我们得出结论,目前,最小CPL模型仍然足以充分描述纳米重力信号;然而,未来的数据集很可能导致非零β的测量。最后,我们将RPL模型解释为宇宙膨胀期间产生的原始GWs的描述,这使我们能够将我们的结果与大爆炸核合成,宇宙微波背景和LIGO-Virgo-KAGRA的上限结合起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The NANOGrav 15 yr Data Set: Running of the Spectral Index
The NANOGrav 15 yr data provide compelling evidence for a stochastic gravitational-wave (GW) background at nanohertz frequencies. The simplest model-independent approach to characterizing the frequency spectrum of this signal consists of a simple power-law fit involving two parameters: an amplitude A and a spectral index γ. In this Letter, we consider the next logical step beyond this minimal spectral model, allowing for a running (i.e., logarithmic frequency dependence) of the spectral index, . We fit this running-power-law (RPL) model to the NANOGrav 15 yr data and perform a Bayesian model comparison with the minimal constant-power-law (CPL) model, which results in a 95% credible interval for the parameter β consistent with no running, , and an inconclusive Bayes factor, . We thus conclude that, at present, the minimal CPL model still suffices to adequately describe the NANOGrav signal; however, future data sets may well lead to a measurement of nonzero β. Finally, we interpret the RPL model as a description of primordial GWs generated during cosmic inflation, which allows us to combine our results with upper limits from Big Bang nucleosynthesis, the cosmic microwave background, and LIGO–Virgo–KAGRA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信