A. Barbón , V. Carreira-Fontao , L. Bayón , G. Spagnuolo
{"title":"光伏电站水平单轴跟踪器运动范围限制对其能源、环境和经济影响的分析","authors":"A. Barbón , V. Carreira-Fontao , L. Bayón , G. Spagnuolo","doi":"10.1016/j.jclepro.2024.144637","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a<span><math><mrow><mn>3</mn><mi>E</mi></mrow></math></span>(energy, environmental and economic) analysis of the impact of the movement limit on a horizontal single-axis tracker in Spain. Four scenarios have been analysed: (i) Scenario 1 (most favourable scenario), characterised by low wind and snow loads (Miraflores <span><math><mrow><mi>P</mi><mi>V</mi></mrow></math></span>plant and Sueca location); (ii) Scenario 2, characterised by low wind and medium snow loads (Canredondo<span><math><mrow><mi>P</mi><mi>V</mi></mrow></math></span>plant); (iii) Scenario 3, characterised by high wind and low snow loads (Basir<span><math><mrow><mi>P</mi><mi>V</mi></mrow></math></span>plant); and (iv) Scenario 4 (less favourable scenario), characterised by high wind and snow loads (Rubió location). Four evaluation indicators (annual incident energy ratio,<span><math><mrow><mi>C</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>emissions ratio,<span><math><mrow><mi>P</mi><mi>V</mi></mrow></math></span>mounting system cost ratio,<span><math><mrow><mi>L</mi><mi>C</mi><mi>O</mi><mi>E</mi></mrow></math></span>efficiency) and ten movement limits (<span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></math></span>), ranging from<span><math><mrow><mo>±</mo><mn>50</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) to<span><math><mrow><mo>±</mo><mn>60</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>), were analysed. Scenario 1 was used for comparison with the other scenarios. According to this study, the following conclusions can be drawn: (i) From an energetic point of view, the optimal maximum movement limit depends on each location; (ii) There is a relationship between<span><math><mrow><mi>C</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> emissions and the presence of wind and snow loads. The higher the impact of wind and snow loads, the higher the<span><math><mrow><mi>C</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>emissions. For example, in Scenario 4, the configurations<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>50</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>),<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>55</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) and<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>60</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) generate1.94(<span><math><mrow><mi>t</mi><mo>/</mo><mi>t</mi><mi>r</mi><mi>a</mi><mi>c</mi><mi>k</mi><mi>e</mi><mi>r</mi></mrow></math></span>),2.07 (<span><math><mrow><mi>t</mi><mo>/</mo><mi>t</mi><mi>r</mi><mi>a</mi><mi>c</mi><mi>k</mi><mi>e</mi><mi>r</mi></mrow></math></span>) and2.11(<span><math><mrow><mi>t</mi><mo>/</mo><mi>t</mi><mi>r</mi><mi>a</mi><mi>c</mi><mi>k</mi><mi>e</mi><mi>r</mi></mrow></math></span>) more<span><math><mrow><mi>C</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> emissions compared to Scenario 1; (iii)<span><math><mrow><mi>C</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>emissions decrease with decreasing<span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></math></span>. For example, in Scenario 4, the <span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>60</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) configuration generates11.42%and4.23%more <span><math><mrow><mi>C</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>emissions compared to the<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>50</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) and<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>55</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) configuration, respectively; (iv) There is a relationship between the cost of the<span><math><mrow><mi>P</mi><mi>V</mi></mrow></math></span>module mounting system and the presence of wind and snow loads. The higher the impact of wind and snow loads, the higher the cost of the<span><math><mrow><mi>P</mi><mi>V</mi></mrow></math></span>module mounting system. For example, in Scenario 4, the configurations<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>50</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>),<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>55</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) and<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>60</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) the cost is higher by approximately 958 (€), 1034 (€) and 1045 (€) compared to Scenario 1; (v) The cost of the <span><math><mrow><mi>P</mi><mi>V</mi></mrow></math></span>module mounting system decreases with decreasing <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></math></span>. For example, in Scenario 4, the<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>60</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) configuration has a higher cost of8.44%and 3.05%compared to the<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>50</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) and<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>55</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) configuration, respectively; and (vi) In all scenarios analysed, the <span><math><mrow><mi>L</mi><mi>C</mi><mi>O</mi><mi>E</mi></mrow></math></span>efficiency was always lower for movement limits below <span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>55</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>).</div></div>","PeriodicalId":349,"journal":{"name":"Journal of Cleaner Production","volume":"489 ","pages":"Article 144637"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy, environmental and economic analysis of the influence of the range of movement limit on horizontal single-axis trackers at photovoltaic power plants\",\"authors\":\"A. Barbón , V. Carreira-Fontao , L. Bayón , G. Spagnuolo\",\"doi\":\"10.1016/j.jclepro.2024.144637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a<span><math><mrow><mn>3</mn><mi>E</mi></mrow></math></span>(energy, environmental and economic) analysis of the impact of the movement limit on a horizontal single-axis tracker in Spain. Four scenarios have been analysed: (i) Scenario 1 (most favourable scenario), characterised by low wind and snow loads (Miraflores <span><math><mrow><mi>P</mi><mi>V</mi></mrow></math></span>plant and Sueca location); (ii) Scenario 2, characterised by low wind and medium snow loads (Canredondo<span><math><mrow><mi>P</mi><mi>V</mi></mrow></math></span>plant); (iii) Scenario 3, characterised by high wind and low snow loads (Basir<span><math><mrow><mi>P</mi><mi>V</mi></mrow></math></span>plant); and (iv) Scenario 4 (less favourable scenario), characterised by high wind and snow loads (Rubió location). Four evaluation indicators (annual incident energy ratio,<span><math><mrow><mi>C</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>emissions ratio,<span><math><mrow><mi>P</mi><mi>V</mi></mrow></math></span>mounting system cost ratio,<span><math><mrow><mi>L</mi><mi>C</mi><mi>O</mi><mi>E</mi></mrow></math></span>efficiency) and ten movement limits (<span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></math></span>), ranging from<span><math><mrow><mo>±</mo><mn>50</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) to<span><math><mrow><mo>±</mo><mn>60</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>), were analysed. Scenario 1 was used for comparison with the other scenarios. According to this study, the following conclusions can be drawn: (i) From an energetic point of view, the optimal maximum movement limit depends on each location; (ii) There is a relationship between<span><math><mrow><mi>C</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> emissions and the presence of wind and snow loads. The higher the impact of wind and snow loads, the higher the<span><math><mrow><mi>C</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>emissions. For example, in Scenario 4, the configurations<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>50</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>),<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>55</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) and<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>60</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) generate1.94(<span><math><mrow><mi>t</mi><mo>/</mo><mi>t</mi><mi>r</mi><mi>a</mi><mi>c</mi><mi>k</mi><mi>e</mi><mi>r</mi></mrow></math></span>),2.07 (<span><math><mrow><mi>t</mi><mo>/</mo><mi>t</mi><mi>r</mi><mi>a</mi><mi>c</mi><mi>k</mi><mi>e</mi><mi>r</mi></mrow></math></span>) and2.11(<span><math><mrow><mi>t</mi><mo>/</mo><mi>t</mi><mi>r</mi><mi>a</mi><mi>c</mi><mi>k</mi><mi>e</mi><mi>r</mi></mrow></math></span>) more<span><math><mrow><mi>C</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> emissions compared to Scenario 1; (iii)<span><math><mrow><mi>C</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>emissions decrease with decreasing<span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></math></span>. For example, in Scenario 4, the <span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>60</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) configuration generates11.42%and4.23%more <span><math><mrow><mi>C</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>emissions compared to the<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>50</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) and<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>55</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) configuration, respectively; (iv) There is a relationship between the cost of the<span><math><mrow><mi>P</mi><mi>V</mi></mrow></math></span>module mounting system and the presence of wind and snow loads. The higher the impact of wind and snow loads, the higher the cost of the<span><math><mrow><mi>P</mi><mi>V</mi></mrow></math></span>module mounting system. For example, in Scenario 4, the configurations<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>50</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>),<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>55</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) and<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>60</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) the cost is higher by approximately 958 (€), 1034 (€) and 1045 (€) compared to Scenario 1; (v) The cost of the <span><math><mrow><mi>P</mi><mi>V</mi></mrow></math></span>module mounting system decreases with decreasing <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></math></span>. For example, in Scenario 4, the<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>60</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) configuration has a higher cost of8.44%and 3.05%compared to the<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>50</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) and<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>55</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) configuration, respectively; and (vi) In all scenarios analysed, the <span><math><mrow><mi>L</mi><mi>C</mi><mi>O</mi><mi>E</mi></mrow></math></span>efficiency was always lower for movement limits below <span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>55</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>).</div></div>\",\"PeriodicalId\":349,\"journal\":{\"name\":\"Journal of Cleaner Production\",\"volume\":\"489 \",\"pages\":\"Article 144637\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cleaner Production\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959652624040861\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cleaner Production","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959652624040861","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Energy, environmental and economic analysis of the influence of the range of movement limit on horizontal single-axis trackers at photovoltaic power plants
This paper presents a(energy, environmental and economic) analysis of the impact of the movement limit on a horizontal single-axis tracker in Spain. Four scenarios have been analysed: (i) Scenario 1 (most favourable scenario), characterised by low wind and snow loads (Miraflores plant and Sueca location); (ii) Scenario 2, characterised by low wind and medium snow loads (Canredondoplant); (iii) Scenario 3, characterised by high wind and low snow loads (Basirplant); and (iv) Scenario 4 (less favourable scenario), characterised by high wind and snow loads (Rubió location). Four evaluation indicators (annual incident energy ratio,emissions ratio,mounting system cost ratio,efficiency) and ten movement limits (), ranging from () to (), were analysed. Scenario 1 was used for comparison with the other scenarios. According to this study, the following conclusions can be drawn: (i) From an energetic point of view, the optimal maximum movement limit depends on each location; (ii) There is a relationship between emissions and the presence of wind and snow loads. The higher the impact of wind and snow loads, the higher theemissions. For example, in Scenario 4, the configurations (), () and () generate1.94(),2.07 () and2.11() more emissions compared to Scenario 1; (iii)emissions decrease with decreasing. For example, in Scenario 4, the () configuration generates11.42%and4.23%more emissions compared to the () and () configuration, respectively; (iv) There is a relationship between the cost of themodule mounting system and the presence of wind and snow loads. The higher the impact of wind and snow loads, the higher the cost of themodule mounting system. For example, in Scenario 4, the configurations (), () and () the cost is higher by approximately 958 (€), 1034 (€) and 1045 (€) compared to Scenario 1; (v) The cost of the module mounting system decreases with decreasing . For example, in Scenario 4, the () configuration has a higher cost of8.44%and 3.05%compared to the () and () configuration, respectively; and (vi) In all scenarios analysed, the efficiency was always lower for movement limits below ().
期刊介绍:
The Journal of Cleaner Production is an international, transdisciplinary journal that addresses and discusses theoretical and practical Cleaner Production, Environmental, and Sustainability issues. It aims to help societies become more sustainable by focusing on the concept of 'Cleaner Production', which aims at preventing waste production and increasing efficiencies in energy, water, resources, and human capital use. The journal serves as a platform for corporations, governments, education institutions, regions, and societies to engage in discussions and research related to Cleaner Production, environmental, and sustainability practices.