光伏电站水平单轴跟踪器运动范围限制对其能源、环境和经济影响的分析

IF 10 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
A. Barbón , V. Carreira-Fontao , L. Bayón , G. Spagnuolo
{"title":"光伏电站水平单轴跟踪器运动范围限制对其能源、环境和经济影响的分析","authors":"A. Barbón ,&nbsp;V. Carreira-Fontao ,&nbsp;L. Bayón ,&nbsp;G. Spagnuolo","doi":"10.1016/j.jclepro.2024.144637","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a<span><math><mrow><mn>3</mn><mi>E</mi></mrow></math></span>(energy, environmental and economic) analysis of the impact of the movement limit on a horizontal single-axis tracker in Spain. Four scenarios have been analysed: (i) Scenario 1 (most favourable scenario), characterised by low wind and snow loads (Miraflores <span><math><mrow><mi>P</mi><mi>V</mi></mrow></math></span>plant and Sueca location); (ii) Scenario 2, characterised by low wind and medium snow loads (Canredondo<span><math><mrow><mi>P</mi><mi>V</mi></mrow></math></span>plant); (iii) Scenario 3, characterised by high wind and low snow loads (Basir<span><math><mrow><mi>P</mi><mi>V</mi></mrow></math></span>plant); and (iv) Scenario 4 (less favourable scenario), characterised by high wind and snow loads (Rubió location). Four evaluation indicators (annual incident energy ratio,<span><math><mrow><mi>C</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>emissions ratio,<span><math><mrow><mi>P</mi><mi>V</mi></mrow></math></span>mounting system cost ratio,<span><math><mrow><mi>L</mi><mi>C</mi><mi>O</mi><mi>E</mi></mrow></math></span>efficiency) and ten movement limits (<span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></math></span>), ranging from<span><math><mrow><mo>±</mo><mn>50</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) to<span><math><mrow><mo>±</mo><mn>60</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>), were analysed. Scenario 1 was used for comparison with the other scenarios. According to this study, the following conclusions can be drawn: (i) From an energetic point of view, the optimal maximum movement limit depends on each location; (ii) There is a relationship between<span><math><mrow><mi>C</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> emissions and the presence of wind and snow loads. The higher the impact of wind and snow loads, the higher the<span><math><mrow><mi>C</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>emissions. For example, in Scenario 4, the configurations<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>50</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>),<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>55</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) and<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>60</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) generate1.94(<span><math><mrow><mi>t</mi><mo>/</mo><mi>t</mi><mi>r</mi><mi>a</mi><mi>c</mi><mi>k</mi><mi>e</mi><mi>r</mi></mrow></math></span>),2.07 (<span><math><mrow><mi>t</mi><mo>/</mo><mi>t</mi><mi>r</mi><mi>a</mi><mi>c</mi><mi>k</mi><mi>e</mi><mi>r</mi></mrow></math></span>) and2.11(<span><math><mrow><mi>t</mi><mo>/</mo><mi>t</mi><mi>r</mi><mi>a</mi><mi>c</mi><mi>k</mi><mi>e</mi><mi>r</mi></mrow></math></span>) more<span><math><mrow><mi>C</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> emissions compared to Scenario 1; (iii)<span><math><mrow><mi>C</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>emissions decrease with decreasing<span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></math></span>. For example, in Scenario 4, the <span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>60</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) configuration generates11.42%and4.23%more <span><math><mrow><mi>C</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>emissions compared to the<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>50</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) and<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>55</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) configuration, respectively; (iv) There is a relationship between the cost of the<span><math><mrow><mi>P</mi><mi>V</mi></mrow></math></span>module mounting system and the presence of wind and snow loads. The higher the impact of wind and snow loads, the higher the cost of the<span><math><mrow><mi>P</mi><mi>V</mi></mrow></math></span>module mounting system. For example, in Scenario 4, the configurations<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>50</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>),<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>55</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) and<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>60</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) the cost is higher by approximately 958 (€), 1034 (€) and 1045 (€) compared to Scenario 1; (v) The cost of the <span><math><mrow><mi>P</mi><mi>V</mi></mrow></math></span>module mounting system decreases with decreasing <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></math></span>. For example, in Scenario 4, the<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>60</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) configuration has a higher cost of8.44%and 3.05%compared to the<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>50</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) and<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>55</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) configuration, respectively; and (vi) In all scenarios analysed, the <span><math><mrow><mi>L</mi><mi>C</mi><mi>O</mi><mi>E</mi></mrow></math></span>efficiency was always lower for movement limits below <span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>55</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>).</div></div>","PeriodicalId":349,"journal":{"name":"Journal of Cleaner Production","volume":"489 ","pages":"Article 144637"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy, environmental and economic analysis of the influence of the range of movement limit on horizontal single-axis trackers at photovoltaic power plants\",\"authors\":\"A. Barbón ,&nbsp;V. Carreira-Fontao ,&nbsp;L. Bayón ,&nbsp;G. Spagnuolo\",\"doi\":\"10.1016/j.jclepro.2024.144637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a<span><math><mrow><mn>3</mn><mi>E</mi></mrow></math></span>(energy, environmental and economic) analysis of the impact of the movement limit on a horizontal single-axis tracker in Spain. Four scenarios have been analysed: (i) Scenario 1 (most favourable scenario), characterised by low wind and snow loads (Miraflores <span><math><mrow><mi>P</mi><mi>V</mi></mrow></math></span>plant and Sueca location); (ii) Scenario 2, characterised by low wind and medium snow loads (Canredondo<span><math><mrow><mi>P</mi><mi>V</mi></mrow></math></span>plant); (iii) Scenario 3, characterised by high wind and low snow loads (Basir<span><math><mrow><mi>P</mi><mi>V</mi></mrow></math></span>plant); and (iv) Scenario 4 (less favourable scenario), characterised by high wind and snow loads (Rubió location). Four evaluation indicators (annual incident energy ratio,<span><math><mrow><mi>C</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>emissions ratio,<span><math><mrow><mi>P</mi><mi>V</mi></mrow></math></span>mounting system cost ratio,<span><math><mrow><mi>L</mi><mi>C</mi><mi>O</mi><mi>E</mi></mrow></math></span>efficiency) and ten movement limits (<span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></math></span>), ranging from<span><math><mrow><mo>±</mo><mn>50</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) to<span><math><mrow><mo>±</mo><mn>60</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>), were analysed. Scenario 1 was used for comparison with the other scenarios. According to this study, the following conclusions can be drawn: (i) From an energetic point of view, the optimal maximum movement limit depends on each location; (ii) There is a relationship between<span><math><mrow><mi>C</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> emissions and the presence of wind and snow loads. The higher the impact of wind and snow loads, the higher the<span><math><mrow><mi>C</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>emissions. For example, in Scenario 4, the configurations<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>50</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>),<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>55</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) and<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>60</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) generate1.94(<span><math><mrow><mi>t</mi><mo>/</mo><mi>t</mi><mi>r</mi><mi>a</mi><mi>c</mi><mi>k</mi><mi>e</mi><mi>r</mi></mrow></math></span>),2.07 (<span><math><mrow><mi>t</mi><mo>/</mo><mi>t</mi><mi>r</mi><mi>a</mi><mi>c</mi><mi>k</mi><mi>e</mi><mi>r</mi></mrow></math></span>) and2.11(<span><math><mrow><mi>t</mi><mo>/</mo><mi>t</mi><mi>r</mi><mi>a</mi><mi>c</mi><mi>k</mi><mi>e</mi><mi>r</mi></mrow></math></span>) more<span><math><mrow><mi>C</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> emissions compared to Scenario 1; (iii)<span><math><mrow><mi>C</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>emissions decrease with decreasing<span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></math></span>. For example, in Scenario 4, the <span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>60</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) configuration generates11.42%and4.23%more <span><math><mrow><mi>C</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>emissions compared to the<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>50</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) and<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>55</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) configuration, respectively; (iv) There is a relationship between the cost of the<span><math><mrow><mi>P</mi><mi>V</mi></mrow></math></span>module mounting system and the presence of wind and snow loads. The higher the impact of wind and snow loads, the higher the cost of the<span><math><mrow><mi>P</mi><mi>V</mi></mrow></math></span>module mounting system. For example, in Scenario 4, the configurations<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>50</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>),<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>55</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) and<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>60</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) the cost is higher by approximately 958 (€), 1034 (€) and 1045 (€) compared to Scenario 1; (v) The cost of the <span><math><mrow><mi>P</mi><mi>V</mi></mrow></math></span>module mounting system decreases with decreasing <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></math></span>. For example, in Scenario 4, the<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>60</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) configuration has a higher cost of8.44%and 3.05%compared to the<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>50</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) and<span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>55</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>) configuration, respectively; and (vi) In all scenarios analysed, the <span><math><mrow><mi>L</mi><mi>C</mi><mi>O</mi><mi>E</mi></mrow></math></span>efficiency was always lower for movement limits below <span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mo>±</mo><mn>55</mn></mrow></math></span> (<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>).</div></div>\",\"PeriodicalId\":349,\"journal\":{\"name\":\"Journal of Cleaner Production\",\"volume\":\"489 \",\"pages\":\"Article 144637\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cleaner Production\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959652624040861\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cleaner Production","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959652624040861","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个3e3e(能源,环境和经济)分析的影响的运动限制对水平单轴跟踪器在西班牙。分析了四种情况:(i)情况1(最有利的情况),其特点是风和雪负荷低(米拉弗洛雷斯pvpv厂和Sueca地点);(ii)以低风和中等雪负荷为特征的方案2 (CanredondoPVPVplant);(iii)方案3,特点是大风和低雪负荷(BasirPVPVplant);及(iv)情况四(较不利的情况),特点是大风和雪荷载(Rubió位置)。分析了4个评价指标(年入射能量比、co2 - co2排放比、pvpv安装系统成本比、LCOELCOEefficiency)和10个运动极限(βmax - βmax),范围从±50±50 (oo)到±60±60 (oo)。场景1用于与其他场景进行比较。根据本研究可以得出以下结论:(i)从能量的角度来看,最佳最大移动限制取决于每个位置;(ii) co2co2排放与风荷载和雪荷载之间存在一定的关系。风荷载和雪荷载的影响越大,co2co2的排放量越高。例如,在场景4中,与场景1相比,βmax=±50βmax=±50 (oo),βmax=±55βmax=±55 (oo)和βmax=±60βmax=±60 (oo)的配置产生的co2排放量增加了1.94(t/trackert/tracker),2.07 (t/trackert/tracker)和2.11(t/trackert/tracker);(3) co2排放量随βmax的减小而减小。例如,在场景4中,βmax=±60βmax=±60 (oo)配置比βmax=±50βmax=±50 (oo)和βmax=±55βmax=±55 (oo)配置分别产生11.42%和4.23%的co2 co2排放量;pvpv模块安装系统的费用与存在风和雪荷载之间存在关系。风荷载和雪荷载的影响越大,pvpvmodule安装系统的成本越高。例如,在场景4中,βmax=±50βmax=±50 (oo),βmax=±55βmax=±55 (oo)和βmax=±60βmax=±60 (oo)的配置成本比场景1高约958(€),1034(€)和1045(€);(v) pvpv模组安装系统的成本随着βmax - βmax的减小而减小。例如,在场景4中,βmax=±60βmax=±60 (oo)配置比βmax=±50βmax=±50 (oo)和βmax=±55βmax=±55 (oo)配置的成本分别高8.44%和3.05%;(vi)在所有分析场景中,当运动极限βmax=±55βmax=±55 (oo)以下时,LCOELCOEefficiency均较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy, environmental and economic analysis of the influence of the range of movement limit on horizontal single-axis trackers at photovoltaic power plants
This paper presents a3E(energy, environmental and economic) analysis of the impact of the movement limit on a horizontal single-axis tracker in Spain. Four scenarios have been analysed: (i) Scenario 1 (most favourable scenario), characterised by low wind and snow loads (Miraflores PVplant and Sueca location); (ii) Scenario 2, characterised by low wind and medium snow loads (CanredondoPVplant); (iii) Scenario 3, characterised by high wind and low snow loads (BasirPVplant); and (iv) Scenario 4 (less favourable scenario), characterised by high wind and snow loads (Rubió location). Four evaluation indicators (annual incident energy ratio,CO2emissions ratio,PVmounting system cost ratio,LCOEefficiency) and ten movement limits (βmax), ranging from±50 (o) to±60 (o), were analysed. Scenario 1 was used for comparison with the other scenarios. According to this study, the following conclusions can be drawn: (i) From an energetic point of view, the optimal maximum movement limit depends on each location; (ii) There is a relationship betweenCO2 emissions and the presence of wind and snow loads. The higher the impact of wind and snow loads, the higher theCO2emissions. For example, in Scenario 4, the configurationsβmax=±50 (o),βmax=±55 (o) andβmax=±60 (o) generate1.94(t/tracker),2.07 (t/tracker) and2.11(t/tracker) moreCO2 emissions compared to Scenario 1; (iii)CO2emissions decrease with decreasingβmax. For example, in Scenario 4, the βmax=±60 (o) configuration generates11.42%and4.23%more CO2emissions compared to theβmax=±50 (o) andβmax=±55 (o) configuration, respectively; (iv) There is a relationship between the cost of thePVmodule mounting system and the presence of wind and snow loads. The higher the impact of wind and snow loads, the higher the cost of thePVmodule mounting system. For example, in Scenario 4, the configurationsβmax=±50 (o),βmax=±55 (o) andβmax=±60 (o) the cost is higher by approximately 958 (€), 1034 (€) and 1045 (€) compared to Scenario 1; (v) The cost of the PVmodule mounting system decreases with decreasing βmax. For example, in Scenario 4, theβmax=±60 (o) configuration has a higher cost of8.44%and 3.05%compared to theβmax=±50 (o) andβmax=±55 (o) configuration, respectively; and (vi) In all scenarios analysed, the LCOEefficiency was always lower for movement limits below βmax=±55 (o).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cleaner Production
Journal of Cleaner Production 环境科学-工程:环境
CiteScore
20.40
自引率
9.00%
发文量
4720
审稿时长
111 days
期刊介绍: The Journal of Cleaner Production is an international, transdisciplinary journal that addresses and discusses theoretical and practical Cleaner Production, Environmental, and Sustainability issues. It aims to help societies become more sustainable by focusing on the concept of 'Cleaner Production', which aims at preventing waste production and increasing efficiencies in energy, water, resources, and human capital use. The journal serves as a platform for corporations, governments, education institutions, regions, and societies to engage in discussions and research related to Cleaner Production, environmental, and sustainability practices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信