{"title":"几种胺对Ni6MnO8纳米结构形貌、结构、纯度及光催化活性的影响","authors":"Masoumeh Yaqoubi, Masoud Salavati-Niasari, Mojgan Ghanbari","doi":"10.1007/s13201-024-02347-4","DOIUrl":null,"url":null,"abstract":"<div><p>Water and wastewater contaminated by dyes are becoming a bigger global problem. The drawbacks of conventional treatment methods are their high prices, lack of sustainability, and partial elimination. Metal oxide semiconductor-based photocatalytic degradation has lately supplanted these techniques. One method promising for completely degrading azo dyes found in wastewater is photocatalysis. Ni<sub>6</sub>MnO<sub>8</sub> nanostructures, a novel photocatalyst, were created in this study to aid in the photocatalytic breakdown of several dyes, especially Eriochrome Black T (EBT). These nanostructures were fabricated through a simple and low-cost co-precipitation method using different amines, including ammonia, tetraethylenepentamine, triethylenetetramine, and ethylenediamine (EDA) as precipitating and capping agents. The pure phase of Ni<sub>6</sub>MnO<sub>8</sub> was achieved in the presence of ammonia. According to the DRS result (bandgap = 2.6 eV), visible light was used to conduct photocatalytic degradation tests on a several dyes solution. The results show that the degradation is greatly influenced by the type of catalyst, dye solution’s starting concentration, pH of dye solution, and the amount of catalyst used. Increased catalyst dose and acidic media result in increased degradation. The maximum degradation rate of Ni<sub>6</sub>MnO<sub>8</sub> prepared in the presence of ammonia on EBT is 96.3% under visible light, and its pseudo-first-order reaction rate constant is 0.0182 min<sup>–1</sup>. The scavenger experiment revealed the hydroxyl radicals performed the superior role in the degradation of EBT. The recycling test indicated the high stability of Ni<sub>6</sub>MnO<sub>8</sub>, with the yield reduced by only 5.6% after five cycles.</p></div>","PeriodicalId":8374,"journal":{"name":"Applied Water Science","volume":"15 2","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13201-024-02347-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of several amines on the morphology, structure, purity, and photocatalytic activity of Ni6MnO8 nanostructures\",\"authors\":\"Masoumeh Yaqoubi, Masoud Salavati-Niasari, Mojgan Ghanbari\",\"doi\":\"10.1007/s13201-024-02347-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Water and wastewater contaminated by dyes are becoming a bigger global problem. The drawbacks of conventional treatment methods are their high prices, lack of sustainability, and partial elimination. Metal oxide semiconductor-based photocatalytic degradation has lately supplanted these techniques. One method promising for completely degrading azo dyes found in wastewater is photocatalysis. Ni<sub>6</sub>MnO<sub>8</sub> nanostructures, a novel photocatalyst, were created in this study to aid in the photocatalytic breakdown of several dyes, especially Eriochrome Black T (EBT). These nanostructures were fabricated through a simple and low-cost co-precipitation method using different amines, including ammonia, tetraethylenepentamine, triethylenetetramine, and ethylenediamine (EDA) as precipitating and capping agents. The pure phase of Ni<sub>6</sub>MnO<sub>8</sub> was achieved in the presence of ammonia. According to the DRS result (bandgap = 2.6 eV), visible light was used to conduct photocatalytic degradation tests on a several dyes solution. The results show that the degradation is greatly influenced by the type of catalyst, dye solution’s starting concentration, pH of dye solution, and the amount of catalyst used. Increased catalyst dose and acidic media result in increased degradation. The maximum degradation rate of Ni<sub>6</sub>MnO<sub>8</sub> prepared in the presence of ammonia on EBT is 96.3% under visible light, and its pseudo-first-order reaction rate constant is 0.0182 min<sup>–1</sup>. The scavenger experiment revealed the hydroxyl radicals performed the superior role in the degradation of EBT. The recycling test indicated the high stability of Ni<sub>6</sub>MnO<sub>8</sub>, with the yield reduced by only 5.6% after five cycles.</p></div>\",\"PeriodicalId\":8374,\"journal\":{\"name\":\"Applied Water Science\",\"volume\":\"15 2\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13201-024-02347-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Water Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13201-024-02347-4\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Water Science","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13201-024-02347-4","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
摘要
被染料污染的水和废水正在成为一个更大的全球性问题。传统治疗方法的缺点是价格高、缺乏可持续性和部分淘汰。金属氧化物半导体光催化降解技术最近已经取代了这些技术。光催化是一种有希望完全降解废水中偶氮染料的方法。本研究制备了一种新型的光催化剂Ni6MnO8纳米结构,用于光催化降解多种染料,特别是Eriochrome Black T (EBT)。采用氨、四乙基二胺、三乙基四胺和乙二胺(EDA)等不同的胺作为沉淀和封盖剂,采用简单、低成本的共沉淀法制备了这些纳米结构。在氨的存在下得到了Ni6MnO8的纯相。根据DRS结果(带隙= 2.6 eV),利用可见光对几种染料溶液进行光催化降解试验。结果表明:催化剂种类、染料溶液起始浓度、染料溶液pH值和催化剂用量对降解效果影响较大。增加催化剂剂量和酸性介质导致降解增加。在可见光下,氨存在下制备的Ni6MnO8在EBT上的最大降解率为96.3%,其拟一级反应速率常数为0.0182 min-1。清除剂实验表明,羟基自由基对EBT的降解作用更强。回收试验表明,Ni6MnO8稳定性高,循环5次后收率仅下降5.6%。
Effect of several amines on the morphology, structure, purity, and photocatalytic activity of Ni6MnO8 nanostructures
Water and wastewater contaminated by dyes are becoming a bigger global problem. The drawbacks of conventional treatment methods are their high prices, lack of sustainability, and partial elimination. Metal oxide semiconductor-based photocatalytic degradation has lately supplanted these techniques. One method promising for completely degrading azo dyes found in wastewater is photocatalysis. Ni6MnO8 nanostructures, a novel photocatalyst, were created in this study to aid in the photocatalytic breakdown of several dyes, especially Eriochrome Black T (EBT). These nanostructures were fabricated through a simple and low-cost co-precipitation method using different amines, including ammonia, tetraethylenepentamine, triethylenetetramine, and ethylenediamine (EDA) as precipitating and capping agents. The pure phase of Ni6MnO8 was achieved in the presence of ammonia. According to the DRS result (bandgap = 2.6 eV), visible light was used to conduct photocatalytic degradation tests on a several dyes solution. The results show that the degradation is greatly influenced by the type of catalyst, dye solution’s starting concentration, pH of dye solution, and the amount of catalyst used. Increased catalyst dose and acidic media result in increased degradation. The maximum degradation rate of Ni6MnO8 prepared in the presence of ammonia on EBT is 96.3% under visible light, and its pseudo-first-order reaction rate constant is 0.0182 min–1. The scavenger experiment revealed the hydroxyl radicals performed the superior role in the degradation of EBT. The recycling test indicated the high stability of Ni6MnO8, with the yield reduced by only 5.6% after five cycles.