{"title":"液体双齿配体对高效近红外钙钛矿量子点led的全配体覆盖","authors":"Zong-Shuo Liu, Ye Wang, Feng Zhao, Hua-Hui Li, Wei-Zhi Liu, Wan-Shan Shen, Hong-Wei Duan, Ya-Kun Wang, Liang-Sheng Liao","doi":"10.1038/s41377-024-01704-x","DOIUrl":null,"url":null,"abstract":"<p>Perovskite quantum dots (PQDs) show promise in light-emitting diodes (LEDs). However, near-infrared (NIR) LEDs employing PQDs exhibit inferior external quantum efficiency related to the PQD emitting in the visible range. One fundamental issue arises from the PQDs dynamic surface: the ligand loss and ions migration to the interfacial sites serve as quenching centers, resulting in trap-assisted recombination and carrier loss. In this work, we developed a chemical treatment strategy to eliminate the interface quenching sites and achieve high carrier utilization. We employ a bidentate and liquid agent (Formamidine thiocyanate, FASCN) with tight binding to suppress the ligand loss and the formation of interfacial quenching sites: the FASCN-treated films exhibit fourfold higher binding energy than the original oleate ligands. Furthermore, the short ligands (carbon chain <3) enable the treated films to show eightfold higher conductivity; and the liquid characteristics of FASCN avoid the use of high polar solvents and guarantee better passivation. The high conductivity ensures efficient charge transportation, enabling PQD-based NIR-LEDs to have a record-low voltage of 1.6 V at 776 nm. Furthermore, the champion EQE of the treated LEDs is ~23%: this is twofold higher than the control, and represents the highest among reported PQD-based NIR-LEDs.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"27 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liquid bidentate ligand for full ligand coverage towards efficient near-infrared perovskite quantum dot LEDs\",\"authors\":\"Zong-Shuo Liu, Ye Wang, Feng Zhao, Hua-Hui Li, Wei-Zhi Liu, Wan-Shan Shen, Hong-Wei Duan, Ya-Kun Wang, Liang-Sheng Liao\",\"doi\":\"10.1038/s41377-024-01704-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Perovskite quantum dots (PQDs) show promise in light-emitting diodes (LEDs). However, near-infrared (NIR) LEDs employing PQDs exhibit inferior external quantum efficiency related to the PQD emitting in the visible range. One fundamental issue arises from the PQDs dynamic surface: the ligand loss and ions migration to the interfacial sites serve as quenching centers, resulting in trap-assisted recombination and carrier loss. In this work, we developed a chemical treatment strategy to eliminate the interface quenching sites and achieve high carrier utilization. We employ a bidentate and liquid agent (Formamidine thiocyanate, FASCN) with tight binding to suppress the ligand loss and the formation of interfacial quenching sites: the FASCN-treated films exhibit fourfold higher binding energy than the original oleate ligands. Furthermore, the short ligands (carbon chain <3) enable the treated films to show eightfold higher conductivity; and the liquid characteristics of FASCN avoid the use of high polar solvents and guarantee better passivation. The high conductivity ensures efficient charge transportation, enabling PQD-based NIR-LEDs to have a record-low voltage of 1.6 V at 776 nm. Furthermore, the champion EQE of the treated LEDs is ~23%: this is twofold higher than the control, and represents the highest among reported PQD-based NIR-LEDs.</p>\",\"PeriodicalId\":18069,\"journal\":{\"name\":\"Light-Science & Applications\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":20.6000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light-Science & Applications\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-024-01704-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01704-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Liquid bidentate ligand for full ligand coverage towards efficient near-infrared perovskite quantum dot LEDs
Perovskite quantum dots (PQDs) show promise in light-emitting diodes (LEDs). However, near-infrared (NIR) LEDs employing PQDs exhibit inferior external quantum efficiency related to the PQD emitting in the visible range. One fundamental issue arises from the PQDs dynamic surface: the ligand loss and ions migration to the interfacial sites serve as quenching centers, resulting in trap-assisted recombination and carrier loss. In this work, we developed a chemical treatment strategy to eliminate the interface quenching sites and achieve high carrier utilization. We employ a bidentate and liquid agent (Formamidine thiocyanate, FASCN) with tight binding to suppress the ligand loss and the formation of interfacial quenching sites: the FASCN-treated films exhibit fourfold higher binding energy than the original oleate ligands. Furthermore, the short ligands (carbon chain <3) enable the treated films to show eightfold higher conductivity; and the liquid characteristics of FASCN avoid the use of high polar solvents and guarantee better passivation. The high conductivity ensures efficient charge transportation, enabling PQD-based NIR-LEDs to have a record-low voltage of 1.6 V at 776 nm. Furthermore, the champion EQE of the treated LEDs is ~23%: this is twofold higher than the control, and represents the highest among reported PQD-based NIR-LEDs.