{"title":"基于结构相似性的筛选结合综合结构生物化学方法探索抗组蛋白去乙酰化酶(HDAC)-6的高亲和力抑制剂。","authors":"Shabir Ahmad Ganai, Suma Mohan","doi":"10.1007/s40203-024-00294-1","DOIUrl":null,"url":null,"abstract":"<p><p>Histone deacetylase (HDAC)-6 has overwhelming implications in multiple cancers and neurodegenerative disorders. Unusual HDAC6 expression modulates various signalling mechanisms which in turn forms the aetiology of the above-mentioned disorders. Thus, restoring the typical activity of HDAC6 through small molecules may prove as a promising approach to beat these disorders. Herein, we employed an integrated approach for exploring the high binding affinity manifesting molecules against HDAC6. We screened the entire PubChem database using Tubastatin A as the reference (query) molecule following which we carried out 110 molecular docking (XP-mode) and 110 MM-GBSA experiments. Thirty-three molecules demonstrated raised binding affinity than query in the HDAC6 active site. Further, the top 3 binders selected on logical grounds were subjected to interaction study, two hit molecules and tubastatin-A were subjected to convoluted molecular dynamics and three-dimensional e-Pharmacophores mapping was done to delineate the rationale behind the high binding tendency of hit molecules over control molecule. This work provides a solid foundation for additional research towards the development of lead molecules from the said hits for therapeutic intervention against HDAC6 overexpression-driven disorders.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"13 1","pages":"8"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695532/pdf/","citationCount":"0","resultStr":"{\"title\":\"Structure similarity based screening coupled to integrated structural biochemistry approach for exploring the high affinity inhibitors against histone deacetylase (HDAC)-6.\",\"authors\":\"Shabir Ahmad Ganai, Suma Mohan\",\"doi\":\"10.1007/s40203-024-00294-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Histone deacetylase (HDAC)-6 has overwhelming implications in multiple cancers and neurodegenerative disorders. Unusual HDAC6 expression modulates various signalling mechanisms which in turn forms the aetiology of the above-mentioned disorders. Thus, restoring the typical activity of HDAC6 through small molecules may prove as a promising approach to beat these disorders. Herein, we employed an integrated approach for exploring the high binding affinity manifesting molecules against HDAC6. We screened the entire PubChem database using Tubastatin A as the reference (query) molecule following which we carried out 110 molecular docking (XP-mode) and 110 MM-GBSA experiments. Thirty-three molecules demonstrated raised binding affinity than query in the HDAC6 active site. Further, the top 3 binders selected on logical grounds were subjected to interaction study, two hit molecules and tubastatin-A were subjected to convoluted molecular dynamics and three-dimensional e-Pharmacophores mapping was done to delineate the rationale behind the high binding tendency of hit molecules over control molecule. This work provides a solid foundation for additional research towards the development of lead molecules from the said hits for therapeutic intervention against HDAC6 overexpression-driven disorders.</p>\",\"PeriodicalId\":94038,\"journal\":{\"name\":\"In silico pharmacology\",\"volume\":\"13 1\",\"pages\":\"8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695532/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In silico pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40203-024-00294-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In silico pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40203-024-00294-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Structure similarity based screening coupled to integrated structural biochemistry approach for exploring the high affinity inhibitors against histone deacetylase (HDAC)-6.
Histone deacetylase (HDAC)-6 has overwhelming implications in multiple cancers and neurodegenerative disorders. Unusual HDAC6 expression modulates various signalling mechanisms which in turn forms the aetiology of the above-mentioned disorders. Thus, restoring the typical activity of HDAC6 through small molecules may prove as a promising approach to beat these disorders. Herein, we employed an integrated approach for exploring the high binding affinity manifesting molecules against HDAC6. We screened the entire PubChem database using Tubastatin A as the reference (query) molecule following which we carried out 110 molecular docking (XP-mode) and 110 MM-GBSA experiments. Thirty-three molecules demonstrated raised binding affinity than query in the HDAC6 active site. Further, the top 3 binders selected on logical grounds were subjected to interaction study, two hit molecules and tubastatin-A were subjected to convoluted molecular dynamics and three-dimensional e-Pharmacophores mapping was done to delineate the rationale behind the high binding tendency of hit molecules over control molecule. This work provides a solid foundation for additional research towards the development of lead molecules from the said hits for therapeutic intervention against HDAC6 overexpression-driven disorders.