{"title":"生物医学用植物和真菌化学物质设计氧化铁和银纳米复合材料:经验教训。","authors":"Olena Ivashchenko","doi":"10.1039/D4TB02284J","DOIUrl":null,"url":null,"abstract":"<p >Multifunctional nanoparticles for biomedical applications are widely researched and constantly developed because they provide wider possibilities for therapy and diagnostics. This work aims to summarise our findings towards the design of multifunctional complex iron oxide and silver nanoparticles (NPs) produced from the plants <em>Zingiber officinale</em> and <em>Hypericum perforatum</em> and mushrooms <em>Amanita muscaria</em> and <em>Sparassis crispa</em>. It was revealed that the antimicrobial and anticancer properties of the NPs were a consequence of the combination of silver and phyto- and fungo-chemicals originating from natural species. Moreover, the photoactive properties of the complex iron oxide and silver nanoparticles promoted photodynamic therapy (<em>λ</em><small><sub>exc</sub></small> = 405 nm) that significantly improved the antibacterial (<em>E. coli</em>, <em>S. aureus</em>, <em>B. pumilus</em>, <em>P. fluorescence</em>) and anticancer (HeLa, U2OS cells) effects. Notably, the gel formulations of the NPs based on hyaluronic and alginic acids had advantages over the aqueous dispersions of the NPs. For instance, being embedded into a hyaluronic acid gel, the NPs were more effective against cancer cells due to the improved uptake of hyaluronic acid by cancer cells. Another advantage of gel formulations of the NPs was connected with their microstructural properties; the nanocomposite gel adjusted its microstructure to the substrate topology, mimicking the substrate scale and pattern. Thus, complex ultrasmall iron oxide and silver nanoparticle NPs synthesized with natural extracts and their gel formulations may find diverse applications in the biomedical field, particularly for local cancer treatment and as post-operative bone or tissue scaffold after cancer or chronic osteomyelitis surgery.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 5","pages":" 1500-1517"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing iron oxide & silver nanocomposites with phyto- and fungo chemicals for biomedicine: lessons learned\",\"authors\":\"Olena Ivashchenko\",\"doi\":\"10.1039/D4TB02284J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Multifunctional nanoparticles for biomedical applications are widely researched and constantly developed because they provide wider possibilities for therapy and diagnostics. This work aims to summarise our findings towards the design of multifunctional complex iron oxide and silver nanoparticles (NPs) produced from the plants <em>Zingiber officinale</em> and <em>Hypericum perforatum</em> and mushrooms <em>Amanita muscaria</em> and <em>Sparassis crispa</em>. It was revealed that the antimicrobial and anticancer properties of the NPs were a consequence of the combination of silver and phyto- and fungo-chemicals originating from natural species. Moreover, the photoactive properties of the complex iron oxide and silver nanoparticles promoted photodynamic therapy (<em>λ</em><small><sub>exc</sub></small> = 405 nm) that significantly improved the antibacterial (<em>E. coli</em>, <em>S. aureus</em>, <em>B. pumilus</em>, <em>P. fluorescence</em>) and anticancer (HeLa, U2OS cells) effects. Notably, the gel formulations of the NPs based on hyaluronic and alginic acids had advantages over the aqueous dispersions of the NPs. For instance, being embedded into a hyaluronic acid gel, the NPs were more effective against cancer cells due to the improved uptake of hyaluronic acid by cancer cells. Another advantage of gel formulations of the NPs was connected with their microstructural properties; the nanocomposite gel adjusted its microstructure to the substrate topology, mimicking the substrate scale and pattern. Thus, complex ultrasmall iron oxide and silver nanoparticle NPs synthesized with natural extracts and their gel formulations may find diverse applications in the biomedical field, particularly for local cancer treatment and as post-operative bone or tissue scaffold after cancer or chronic osteomyelitis surgery.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 5\",\"pages\":\" 1500-1517\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb02284j\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb02284j","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Designing iron oxide & silver nanocomposites with phyto- and fungo chemicals for biomedicine: lessons learned
Multifunctional nanoparticles for biomedical applications are widely researched and constantly developed because they provide wider possibilities for therapy and diagnostics. This work aims to summarise our findings towards the design of multifunctional complex iron oxide and silver nanoparticles (NPs) produced from the plants Zingiber officinale and Hypericum perforatum and mushrooms Amanita muscaria and Sparassis crispa. It was revealed that the antimicrobial and anticancer properties of the NPs were a consequence of the combination of silver and phyto- and fungo-chemicals originating from natural species. Moreover, the photoactive properties of the complex iron oxide and silver nanoparticles promoted photodynamic therapy (λexc = 405 nm) that significantly improved the antibacterial (E. coli, S. aureus, B. pumilus, P. fluorescence) and anticancer (HeLa, U2OS cells) effects. Notably, the gel formulations of the NPs based on hyaluronic and alginic acids had advantages over the aqueous dispersions of the NPs. For instance, being embedded into a hyaluronic acid gel, the NPs were more effective against cancer cells due to the improved uptake of hyaluronic acid by cancer cells. Another advantage of gel formulations of the NPs was connected with their microstructural properties; the nanocomposite gel adjusted its microstructure to the substrate topology, mimicking the substrate scale and pattern. Thus, complex ultrasmall iron oxide and silver nanoparticle NPs synthesized with natural extracts and their gel formulations may find diverse applications in the biomedical field, particularly for local cancer treatment and as post-operative bone or tissue scaffold after cancer or chronic osteomyelitis surgery.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices