{"title":"提高实时led光声成像的信噪比:基于cnn的深度学习架构的比较研究。","authors":"Avijit Paul, Srivalleesha Mallidi","doi":"10.1016/j.pacs.2024.100674","DOIUrl":null,"url":null,"abstract":"<div><div>Recent advances in Light Emitting Diode (LED) technology have enabled a more affordable high frame rate photoacoustic imaging (PA) alternative to traditional laser-based PA systems that are costly and have slow pulse repetition rate. However, a major disadvantage with LEDs is the low energy outputs that do not produce high signal-to-noise ratio (SNR) PA images. There have been recent advancements in integrating deep learning methodologies aimed to address the challenge of improving SNR in LED-PA images, yet comprehensive evaluations across varied datasets and architectures are lacking. In this study, we systematically assess the efficacy of various Encoder-Decoder-based CNN architectures for enhancing SNR in real-time LED-based PA imaging. Through experimentation with <em>in vitro</em> phantoms, <em>ex vivo</em> mouse organs, and <em>in vivo</em> tumors, we compare basic convolutional autoencoder and U-Net architectures, explore hierarchical depth variations within U-Net, and evaluate advanced variants of U-Net. Our findings reveal that while U-Net architectures generally exhibit comparable performance, the Dense U-Net model shows promise in denoising different noise distributions in the PA image. Notably, hierarchical depth variations did not significantly impact performance, emphasizing the efficacy of the standard U-Net architecture for practical applications. Moreover, the study underscores the importance of evaluating robustness to diverse noise distributions, with Dense U-Net and R2 U-Net demonstrating resilience to Gaussian, salt and pepper, Poisson, and Speckle noise types. These insights inform the selection of appropriate deep learning architectures based on application requirements and resource constraints, contributing to advancements in PA imaging technology.</div></div>","PeriodicalId":56025,"journal":{"name":"Photoacoustics","volume":"41 ","pages":"Article 100674"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699471/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing signal-to-noise ratio in real-time LED-based photoacoustic imaging: A comparative study of CNN-based deep learning architectures\",\"authors\":\"Avijit Paul, Srivalleesha Mallidi\",\"doi\":\"10.1016/j.pacs.2024.100674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recent advances in Light Emitting Diode (LED) technology have enabled a more affordable high frame rate photoacoustic imaging (PA) alternative to traditional laser-based PA systems that are costly and have slow pulse repetition rate. However, a major disadvantage with LEDs is the low energy outputs that do not produce high signal-to-noise ratio (SNR) PA images. There have been recent advancements in integrating deep learning methodologies aimed to address the challenge of improving SNR in LED-PA images, yet comprehensive evaluations across varied datasets and architectures are lacking. In this study, we systematically assess the efficacy of various Encoder-Decoder-based CNN architectures for enhancing SNR in real-time LED-based PA imaging. Through experimentation with <em>in vitro</em> phantoms, <em>ex vivo</em> mouse organs, and <em>in vivo</em> tumors, we compare basic convolutional autoencoder and U-Net architectures, explore hierarchical depth variations within U-Net, and evaluate advanced variants of U-Net. Our findings reveal that while U-Net architectures generally exhibit comparable performance, the Dense U-Net model shows promise in denoising different noise distributions in the PA image. Notably, hierarchical depth variations did not significantly impact performance, emphasizing the efficacy of the standard U-Net architecture for practical applications. Moreover, the study underscores the importance of evaluating robustness to diverse noise distributions, with Dense U-Net and R2 U-Net demonstrating resilience to Gaussian, salt and pepper, Poisson, and Speckle noise types. These insights inform the selection of appropriate deep learning architectures based on application requirements and resource constraints, contributing to advancements in PA imaging technology.</div></div>\",\"PeriodicalId\":56025,\"journal\":{\"name\":\"Photoacoustics\",\"volume\":\"41 \",\"pages\":\"Article 100674\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699471/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photoacoustics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213597924000910\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoacoustics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213597924000910","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Enhancing signal-to-noise ratio in real-time LED-based photoacoustic imaging: A comparative study of CNN-based deep learning architectures
Recent advances in Light Emitting Diode (LED) technology have enabled a more affordable high frame rate photoacoustic imaging (PA) alternative to traditional laser-based PA systems that are costly and have slow pulse repetition rate. However, a major disadvantage with LEDs is the low energy outputs that do not produce high signal-to-noise ratio (SNR) PA images. There have been recent advancements in integrating deep learning methodologies aimed to address the challenge of improving SNR in LED-PA images, yet comprehensive evaluations across varied datasets and architectures are lacking. In this study, we systematically assess the efficacy of various Encoder-Decoder-based CNN architectures for enhancing SNR in real-time LED-based PA imaging. Through experimentation with in vitro phantoms, ex vivo mouse organs, and in vivo tumors, we compare basic convolutional autoencoder and U-Net architectures, explore hierarchical depth variations within U-Net, and evaluate advanced variants of U-Net. Our findings reveal that while U-Net architectures generally exhibit comparable performance, the Dense U-Net model shows promise in denoising different noise distributions in the PA image. Notably, hierarchical depth variations did not significantly impact performance, emphasizing the efficacy of the standard U-Net architecture for practical applications. Moreover, the study underscores the importance of evaluating robustness to diverse noise distributions, with Dense U-Net and R2 U-Net demonstrating resilience to Gaussian, salt and pepper, Poisson, and Speckle noise types. These insights inform the selection of appropriate deep learning architectures based on application requirements and resource constraints, contributing to advancements in PA imaging technology.
PhotoacousticsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
11.40
自引率
16.50%
发文量
96
审稿时长
53 days
期刊介绍:
The open access Photoacoustics journal (PACS) aims to publish original research and review contributions in the field of photoacoustics-optoacoustics-thermoacoustics. This field utilizes acoustical and ultrasonic phenomena excited by electromagnetic radiation for the detection, visualization, and characterization of various materials and biological tissues, including living organisms.
Recent advancements in laser technologies, ultrasound detection approaches, inverse theory, and fast reconstruction algorithms have greatly supported the rapid progress in this field. The unique contrast provided by molecular absorption in photoacoustic-optoacoustic-thermoacoustic methods has allowed for addressing unmet biological and medical needs such as pre-clinical research, clinical imaging of vasculature, tissue and disease physiology, drug efficacy, surgery guidance, and therapy monitoring.
Applications of this field encompass a wide range of medical imaging and sensing applications, including cancer, vascular diseases, brain neurophysiology, ophthalmology, and diabetes. Moreover, photoacoustics-optoacoustics-thermoacoustics is a multidisciplinary field, with contributions from chemistry and nanotechnology, where novel materials such as biodegradable nanoparticles, organic dyes, targeted agents, theranostic probes, and genetically expressed markers are being actively developed.
These advanced materials have significantly improved the signal-to-noise ratio and tissue contrast in photoacoustic methods.