{"title":"FedPneu:跨多客户端跨竖井医疗数据集的肺炎检测联邦学习。","authors":"Shagun Sharma, Kalpna Guleria, Ayush Dogra","doi":"10.2174/0115734056333970241212132150","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pneumonia is an acute respiratory infection that has emerged as the predominant catalyst for escalating mortality rates worldwide. In the pursuit of the prevention and prediction of pneumonia, this work employs the development of an advanced deep-learning model by using a federated learning framework. The deep learning models rely on the utilization of a centralized system for disease prediction on the medical imaging data and pose risks of data breaches and exploitation; however, federated learning is a decentralized architecture which significantly reduces data privacy concerns.</p><p><strong>Methods: </strong>The federated learning works in a distributed architecture by sending a global model to clients rather than sending the data to the model. The proposed federated deep learning-based FedPneu computer-aided diagnosis model has been implemented in 2, 3, 4, and 5 clients architecture for early pneumonia detection using X-ray images. The key parameters configuration include batch size, learning rate, optimizer, decay, momentum, epochs, rounds, and random-split as 32, 0.0001, SGD, 0.000001, 0.9, 10, 100, and 42, respectively.</p><p><strong>Results: </strong>The results of the proposed federated deep learning-based FedPneu model have been provided in terms of round-wise accuracy, loss, and computational time. The highest accuracy of 85.632% has been achieved with 2-clients federated deep learning architecture, whereas, 3, 4, and 5 clients architecture achieved 85.536%, 76.112%, and 74.123% accuracies, respectively.</p><p><strong>Conclusion: </strong>In the proposed privacy-protected federated deep learning-based FedPneu model, the two-client architecture has been resulted as the most optimal framework for pneumonia detection among 3-clients, 4-clients, and 5-clients architecture. The model works in a collaborative and privacyprotected framework with a multi-silo dataset which could be highly beneficial for healthcare departments to maintain patient's data privacy with improved prediction outcomes.</p>","PeriodicalId":54215,"journal":{"name":"Current Medical Imaging Reviews","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FedPneu: Federated Learning for Pneumonia Detection across Multiclient Cross-Silo Healthcare Datasets.\",\"authors\":\"Shagun Sharma, Kalpna Guleria, Ayush Dogra\",\"doi\":\"10.2174/0115734056333970241212132150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Pneumonia is an acute respiratory infection that has emerged as the predominant catalyst for escalating mortality rates worldwide. In the pursuit of the prevention and prediction of pneumonia, this work employs the development of an advanced deep-learning model by using a federated learning framework. The deep learning models rely on the utilization of a centralized system for disease prediction on the medical imaging data and pose risks of data breaches and exploitation; however, federated learning is a decentralized architecture which significantly reduces data privacy concerns.</p><p><strong>Methods: </strong>The federated learning works in a distributed architecture by sending a global model to clients rather than sending the data to the model. The proposed federated deep learning-based FedPneu computer-aided diagnosis model has been implemented in 2, 3, 4, and 5 clients architecture for early pneumonia detection using X-ray images. The key parameters configuration include batch size, learning rate, optimizer, decay, momentum, epochs, rounds, and random-split as 32, 0.0001, SGD, 0.000001, 0.9, 10, 100, and 42, respectively.</p><p><strong>Results: </strong>The results of the proposed federated deep learning-based FedPneu model have been provided in terms of round-wise accuracy, loss, and computational time. The highest accuracy of 85.632% has been achieved with 2-clients federated deep learning architecture, whereas, 3, 4, and 5 clients architecture achieved 85.536%, 76.112%, and 74.123% accuracies, respectively.</p><p><strong>Conclusion: </strong>In the proposed privacy-protected federated deep learning-based FedPneu model, the two-client architecture has been resulted as the most optimal framework for pneumonia detection among 3-clients, 4-clients, and 5-clients architecture. The model works in a collaborative and privacyprotected framework with a multi-silo dataset which could be highly beneficial for healthcare departments to maintain patient's data privacy with improved prediction outcomes.</p>\",\"PeriodicalId\":54215,\"journal\":{\"name\":\"Current Medical Imaging Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Medical Imaging Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734056333970241212132150\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Medical Imaging Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734056333970241212132150","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
FedPneu: Federated Learning for Pneumonia Detection across Multiclient Cross-Silo Healthcare Datasets.
Background: Pneumonia is an acute respiratory infection that has emerged as the predominant catalyst for escalating mortality rates worldwide. In the pursuit of the prevention and prediction of pneumonia, this work employs the development of an advanced deep-learning model by using a federated learning framework. The deep learning models rely on the utilization of a centralized system for disease prediction on the medical imaging data and pose risks of data breaches and exploitation; however, federated learning is a decentralized architecture which significantly reduces data privacy concerns.
Methods: The federated learning works in a distributed architecture by sending a global model to clients rather than sending the data to the model. The proposed federated deep learning-based FedPneu computer-aided diagnosis model has been implemented in 2, 3, 4, and 5 clients architecture for early pneumonia detection using X-ray images. The key parameters configuration include batch size, learning rate, optimizer, decay, momentum, epochs, rounds, and random-split as 32, 0.0001, SGD, 0.000001, 0.9, 10, 100, and 42, respectively.
Results: The results of the proposed federated deep learning-based FedPneu model have been provided in terms of round-wise accuracy, loss, and computational time. The highest accuracy of 85.632% has been achieved with 2-clients federated deep learning architecture, whereas, 3, 4, and 5 clients architecture achieved 85.536%, 76.112%, and 74.123% accuracies, respectively.
Conclusion: In the proposed privacy-protected federated deep learning-based FedPneu model, the two-client architecture has been resulted as the most optimal framework for pneumonia detection among 3-clients, 4-clients, and 5-clients architecture. The model works in a collaborative and privacyprotected framework with a multi-silo dataset which could be highly beneficial for healthcare departments to maintain patient's data privacy with improved prediction outcomes.
期刊介绍:
Current Medical Imaging Reviews publishes frontier review articles, original research articles, drug clinical trial studies and guest edited thematic issues on all the latest advances on medical imaging dedicated to clinical research. All relevant areas are covered by the journal, including advances in the diagnosis, instrumentation and therapeutic applications related to all modern medical imaging techniques.
The journal is essential reading for all clinicians and researchers involved in medical imaging and diagnosis.