静磁场对啮齿动物伤口愈合的影响:系统综述和荟萃分析。

IF 1.6 4区 生物学 Q3 BIOLOGY
Electromagnetic Biology and Medicine Pub Date : 2025-01-02 Epub Date: 2025-01-06 DOI:10.1080/15368378.2024.2448186
Lizie Tanani Lewandoski, Vanessa Grymuza de Souza, Gabriella Cannan Kiekiss, Franciele Soares, Márcia Rosangela Buzanello, Gladson Ricardo Flor Bertolini
{"title":"静磁场对啮齿动物伤口愈合的影响:系统综述和荟萃分析。","authors":"Lizie Tanani Lewandoski, Vanessa Grymuza de Souza, Gabriella Cannan Kiekiss, Franciele Soares, Márcia Rosangela Buzanello, Gladson Ricardo Flor Bertolini","doi":"10.1080/15368378.2024.2448186","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The aim of this study was to systematically review the preclinical studies that have applied the static magnetic field to wound healing.</p><p><strong>Methods: </strong>The search strategy was performed in databases: PubMed, Embase, Scopus, Web of Science, LILACS, CINAHL and Cochrane Database, and in gray literature. The inclusion criteria were: Pre-clinical studies, either with a separate control/sham parallel-group or cross-over design in rodents that used magnets to treat skin injuries anywhere on the body. The risk of bias tool was the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE).</p><p><strong>Results: </strong>Eight randomized clinical trials were included. Wound rate area DM experimental vs DM sham [MD = 2.19, 95% CI, (-0.61, 4.99), I<sup>2</sup> 25%, <i>p</i> = 0.13] and wound rate area - DM experimental vs non-DM control [MD = 3.33, 95% CI, (-1.86, 8.55), I<sup>2</sup> 63%, <i>p</i> = 0.21] were not statistically significant. A significant improvement in gross healing time in the experimental group DM compared to the DM sham [MD = -4.48, IC 95%, (-7.88, -1.07), I<sup>2</sup> 38%, <i>p</i> = 0.010]. The same way tensile strength - DM and non DM subgroup analysis showed improved tensile strength in both the non-diabetic and diabetic experiment groups [SMD = 1.36, 95% CI, (0.60, 2.12), I<sup>2</sup> 0%, <i>p</i> = 0.0005].</p><p><strong>Conclusions: </strong>Although not statistically significant, the static magnetic field had a positive effect on wound healing in rodents compared to the sham or control group. There was a significant improvement in the assessment of healing time and skin tensile strength.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"107-118"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Static magnetic field on wound healing in rodents: a systematic review and meta-analysis.\",\"authors\":\"Lizie Tanani Lewandoski, Vanessa Grymuza de Souza, Gabriella Cannan Kiekiss, Franciele Soares, Márcia Rosangela Buzanello, Gladson Ricardo Flor Bertolini\",\"doi\":\"10.1080/15368378.2024.2448186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>The aim of this study was to systematically review the preclinical studies that have applied the static magnetic field to wound healing.</p><p><strong>Methods: </strong>The search strategy was performed in databases: PubMed, Embase, Scopus, Web of Science, LILACS, CINAHL and Cochrane Database, and in gray literature. The inclusion criteria were: Pre-clinical studies, either with a separate control/sham parallel-group or cross-over design in rodents that used magnets to treat skin injuries anywhere on the body. The risk of bias tool was the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE).</p><p><strong>Results: </strong>Eight randomized clinical trials were included. Wound rate area DM experimental vs DM sham [MD = 2.19, 95% CI, (-0.61, 4.99), I<sup>2</sup> 25%, <i>p</i> = 0.13] and wound rate area - DM experimental vs non-DM control [MD = 3.33, 95% CI, (-1.86, 8.55), I<sup>2</sup> 63%, <i>p</i> = 0.21] were not statistically significant. A significant improvement in gross healing time in the experimental group DM compared to the DM sham [MD = -4.48, IC 95%, (-7.88, -1.07), I<sup>2</sup> 38%, <i>p</i> = 0.010]. The same way tensile strength - DM and non DM subgroup analysis showed improved tensile strength in both the non-diabetic and diabetic experiment groups [SMD = 1.36, 95% CI, (0.60, 2.12), I<sup>2</sup> 0%, <i>p</i> = 0.0005].</p><p><strong>Conclusions: </strong>Although not statistically significant, the static magnetic field had a positive effect on wound healing in rodents compared to the sham or control group. There was a significant improvement in the assessment of healing time and skin tensile strength.</p>\",\"PeriodicalId\":50544,\"journal\":{\"name\":\"Electromagnetic Biology and Medicine\",\"volume\":\" \",\"pages\":\"107-118\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electromagnetic Biology and Medicine\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15368378.2024.2448186\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electromagnetic Biology and Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15368378.2024.2448186","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:对静磁场应用于创面愈合的临床前研究进行系统综述。方法:在PubMed、Embase、Scopus、Web of Science、LILACS、CINAHL、Cochrane等数据库和灰色文献中进行检索。纳入标准为:临床前研究,在啮齿类动物中使用磁铁治疗身体任何部位的皮肤损伤,有单独的对照/假平行组或交叉设计。偏倚风险工具是实验动物实验系统评价中心(sycle)。结果:纳入8项随机临床试验。DM实验组与DM假组的创面面积[MD = 2.19, 95% CI, (-0.61, 4.99), I2 25%, p = 0.13]和DM实验组与非DM对照组的创面面积[MD = 3.33, 95% CI, (-1.86, 8.55), I2 63%, p = 0.21]差异均无统计学意义。与DM假组相比,实验组DM总愈合时间显著改善[MD = -4.48, IC 95%, (-7.88, -1.07), I2 38%, p = 0.010]。同样,抗拉强度-糖尿病和非糖尿病亚组分析显示,非糖尿病和糖尿病实验组的抗拉强度均有所提高[SMD = 1.36, 95% CI, (0.60, 2.12), I2 %, p = 0.0005]。结论:虽然无统计学意义,但与假手术组和对照组相比,静磁场对啮齿动物伤口愈合有积极作用。在愈合时间和皮肤抗拉强度评估方面有显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Static magnetic field on wound healing in rodents: a systematic review and meta-analysis.

Objective: The aim of this study was to systematically review the preclinical studies that have applied the static magnetic field to wound healing.

Methods: The search strategy was performed in databases: PubMed, Embase, Scopus, Web of Science, LILACS, CINAHL and Cochrane Database, and in gray literature. The inclusion criteria were: Pre-clinical studies, either with a separate control/sham parallel-group or cross-over design in rodents that used magnets to treat skin injuries anywhere on the body. The risk of bias tool was the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE).

Results: Eight randomized clinical trials were included. Wound rate area DM experimental vs DM sham [MD = 2.19, 95% CI, (-0.61, 4.99), I2 25%, p = 0.13] and wound rate area - DM experimental vs non-DM control [MD = 3.33, 95% CI, (-1.86, 8.55), I2 63%, p = 0.21] were not statistically significant. A significant improvement in gross healing time in the experimental group DM compared to the DM sham [MD = -4.48, IC 95%, (-7.88, -1.07), I2 38%, p = 0.010]. The same way tensile strength - DM and non DM subgroup analysis showed improved tensile strength in both the non-diabetic and diabetic experiment groups [SMD = 1.36, 95% CI, (0.60, 2.12), I2 0%, p = 0.0005].

Conclusions: Although not statistically significant, the static magnetic field had a positive effect on wound healing in rodents compared to the sham or control group. There was a significant improvement in the assessment of healing time and skin tensile strength.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
11.80%
发文量
33
审稿时长
>12 weeks
期刊介绍: Aims & Scope: Electromagnetic Biology and Medicine, publishes peer-reviewed research articles on the biological effects and medical applications of non-ionizing electromagnetic fields (from extremely-low frequency to radiofrequency). Topic examples include in vitro and in vivo studies, epidemiological investigation, mechanism and mode of interaction between non-ionizing electromagnetic fields and biological systems. In addition to publishing original articles, the journal also publishes meeting summaries and reports, and reviews on selected topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信