Caozhe Li , Enxiang Shen , Haoyang Wang , Yuxin Wang , Jie Yuan , Li Gong , Di Zhao , Weijing Zhang , Zhibin Jin
{"title":"大器官的实时无手超声成像:全脊柱成像的研究。","authors":"Caozhe Li , Enxiang Shen , Haoyang Wang , Yuxin Wang , Jie Yuan , Li Gong , Di Zhao , Weijing Zhang , Zhibin Jin","doi":"10.1016/j.ultrasmedbio.2024.12.015","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>Three-dimensional (3D) ultrasound imaging can overcome the limitations of conventional two-dimensional (2D) ultrasound imaging in structural observation and measurement. However, conducting volumetric ultrasound imaging for large-sized organs still faces difficulties including long acquisition time, inevitable patient movement, and 3D feature recognition. In this study, we proposed a real-time volumetric free-hand ultrasound imaging system optimized for the above issues and applied it to the clinical diagnosis of scoliosis.</div></div><div><h3>Methods</h3><div>This study employed an incremental imaging method coupled with algorithmic acceleration to enable real-time processing and visualization of the large amounts of data generated when scanning large-sized organs. Furthermore, to deal with the difficulty of image feature recognition, we proposed two tissue segmentation algorithms to reconstruct and visualize the spinal anatomy in 3D space by approximating the depth at which the bone structures are located and segmenting the ultrasound images at different depths.</div></div><div><h3>Results</h3><div>We validated the adaptability of our system by deploying it to multiple models of ultrasound equipment and conducting experiments using different types of ultrasound probes. We also conducted experiments on six scoliosis patients and 10 normal volunteers to evaluate the performance of our proposed method. Ultrasound imaging of a volunteer spine from shoulder to crotch (more than 500 mm) was performed in 2 minutes, and the 3D imaging results displayed in real-time were compared with the corresponding X-ray images with a correlation coefficient of 0.96 in spinal curvature.</div></div><div><h3>Conclusion</h3><div>Our proposed volumetric ultrasound imaging system might hold the potential to be clinically applied to other large-sized organs.</div></div>","PeriodicalId":49399,"journal":{"name":"Ultrasound in Medicine and Biology","volume":"51 3","pages":"Pages 598-605"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-Time Volumetric Free-Hand Ultrasound Imaging for Large-Sized Organs: A Study of Imaging the Whole Spine\",\"authors\":\"Caozhe Li , Enxiang Shen , Haoyang Wang , Yuxin Wang , Jie Yuan , Li Gong , Di Zhao , Weijing Zhang , Zhibin Jin\",\"doi\":\"10.1016/j.ultrasmedbio.2024.12.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objectives</h3><div>Three-dimensional (3D) ultrasound imaging can overcome the limitations of conventional two-dimensional (2D) ultrasound imaging in structural observation and measurement. However, conducting volumetric ultrasound imaging for large-sized organs still faces difficulties including long acquisition time, inevitable patient movement, and 3D feature recognition. In this study, we proposed a real-time volumetric free-hand ultrasound imaging system optimized for the above issues and applied it to the clinical diagnosis of scoliosis.</div></div><div><h3>Methods</h3><div>This study employed an incremental imaging method coupled with algorithmic acceleration to enable real-time processing and visualization of the large amounts of data generated when scanning large-sized organs. Furthermore, to deal with the difficulty of image feature recognition, we proposed two tissue segmentation algorithms to reconstruct and visualize the spinal anatomy in 3D space by approximating the depth at which the bone structures are located and segmenting the ultrasound images at different depths.</div></div><div><h3>Results</h3><div>We validated the adaptability of our system by deploying it to multiple models of ultrasound equipment and conducting experiments using different types of ultrasound probes. We also conducted experiments on six scoliosis patients and 10 normal volunteers to evaluate the performance of our proposed method. Ultrasound imaging of a volunteer spine from shoulder to crotch (more than 500 mm) was performed in 2 minutes, and the 3D imaging results displayed in real-time were compared with the corresponding X-ray images with a correlation coefficient of 0.96 in spinal curvature.</div></div><div><h3>Conclusion</h3><div>Our proposed volumetric ultrasound imaging system might hold the potential to be clinically applied to other large-sized organs.</div></div>\",\"PeriodicalId\":49399,\"journal\":{\"name\":\"Ultrasound in Medicine and Biology\",\"volume\":\"51 3\",\"pages\":\"Pages 598-605\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasound in Medicine and Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301562924004745\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasound in Medicine and Biology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301562924004745","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
Real-Time Volumetric Free-Hand Ultrasound Imaging for Large-Sized Organs: A Study of Imaging the Whole Spine
Objectives
Three-dimensional (3D) ultrasound imaging can overcome the limitations of conventional two-dimensional (2D) ultrasound imaging in structural observation and measurement. However, conducting volumetric ultrasound imaging for large-sized organs still faces difficulties including long acquisition time, inevitable patient movement, and 3D feature recognition. In this study, we proposed a real-time volumetric free-hand ultrasound imaging system optimized for the above issues and applied it to the clinical diagnosis of scoliosis.
Methods
This study employed an incremental imaging method coupled with algorithmic acceleration to enable real-time processing and visualization of the large amounts of data generated when scanning large-sized organs. Furthermore, to deal with the difficulty of image feature recognition, we proposed two tissue segmentation algorithms to reconstruct and visualize the spinal anatomy in 3D space by approximating the depth at which the bone structures are located and segmenting the ultrasound images at different depths.
Results
We validated the adaptability of our system by deploying it to multiple models of ultrasound equipment and conducting experiments using different types of ultrasound probes. We also conducted experiments on six scoliosis patients and 10 normal volunteers to evaluate the performance of our proposed method. Ultrasound imaging of a volunteer spine from shoulder to crotch (more than 500 mm) was performed in 2 minutes, and the 3D imaging results displayed in real-time were compared with the corresponding X-ray images with a correlation coefficient of 0.96 in spinal curvature.
Conclusion
Our proposed volumetric ultrasound imaging system might hold the potential to be clinically applied to other large-sized organs.
期刊介绍:
Ultrasound in Medicine and Biology is the official journal of the World Federation for Ultrasound in Medicine and Biology. The journal publishes original contributions that demonstrate a novel application of an existing ultrasound technology in clinical diagnostic, interventional and therapeutic applications, new and improved clinical techniques, the physics, engineering and technology of ultrasound in medicine and biology, and the interactions between ultrasound and biological systems, including bioeffects. Papers that simply utilize standard diagnostic ultrasound as a measuring tool will be considered out of scope. Extended critical reviews of subjects of contemporary interest in the field are also published, in addition to occasional editorial articles, clinical and technical notes, book reviews, letters to the editor and a calendar of forthcoming meetings. It is the aim of the journal fully to meet the information and publication requirements of the clinicians, scientists, engineers and other professionals who constitute the biomedical ultrasonic community.