Lucile Cabanel, Haïzam Oubari, Ludivine Dion, Vincent Lavoué, Mark A Randolph, Curtis L Cetrulo, Korkut Uygun, Alexandre G Lellouch, Yanis Berkane, Basak E Uygun
{"title":"建立猪模型研究子宫动态保存与移植。","authors":"Lucile Cabanel, Haïzam Oubari, Ludivine Dion, Vincent Lavoué, Mark A Randolph, Curtis L Cetrulo, Korkut Uygun, Alexandre G Lellouch, Yanis Berkane, Basak E Uygun","doi":"10.3791/67357","DOIUrl":null,"url":null,"abstract":"<p><p>To date, uterus transplantation is the only option for women with absolute uterine infertility, such as those with Rokitansky syndrome, to experience pregnancy and give birth. Despite the growing interest in uterus transplantation in recent years, several issues still require further research, including ischemia-reperfusion injury and its impact on graft quality and rejection. Recent literature has highlighted a thrombotic complication rate of up to 20% following uterus transplantation. This type of complication may result from hypoxia-induced endothelial cell damage, often leading to uterine graft rejection. Hypoxia is induced during static cold storage, which remains the gold standard for graft preservation in solid organ transplantation. Recently, dynamic preservation using machine perfusion has been shown to improve the long-term storage of conventional and marginal organs by reducing ischemic and hypoxic injury. In this protocol, we aim to describe every surgical step involved in porcine uterus procurement and dynamic preservation, based on both uterine pedicles, to enable the connection and initiation of the machine perfusion protocol.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 214","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Establishing a Swine Model to Study Uterus Dynamic Preservation and Transplantation.\",\"authors\":\"Lucile Cabanel, Haïzam Oubari, Ludivine Dion, Vincent Lavoué, Mark A Randolph, Curtis L Cetrulo, Korkut Uygun, Alexandre G Lellouch, Yanis Berkane, Basak E Uygun\",\"doi\":\"10.3791/67357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To date, uterus transplantation is the only option for women with absolute uterine infertility, such as those with Rokitansky syndrome, to experience pregnancy and give birth. Despite the growing interest in uterus transplantation in recent years, several issues still require further research, including ischemia-reperfusion injury and its impact on graft quality and rejection. Recent literature has highlighted a thrombotic complication rate of up to 20% following uterus transplantation. This type of complication may result from hypoxia-induced endothelial cell damage, often leading to uterine graft rejection. Hypoxia is induced during static cold storage, which remains the gold standard for graft preservation in solid organ transplantation. Recently, dynamic preservation using machine perfusion has been shown to improve the long-term storage of conventional and marginal organs by reducing ischemic and hypoxic injury. In this protocol, we aim to describe every surgical step involved in porcine uterus procurement and dynamic preservation, based on both uterine pedicles, to enable the connection and initiation of the machine perfusion protocol.</p>\",\"PeriodicalId\":48787,\"journal\":{\"name\":\"Jove-Journal of Visualized Experiments\",\"volume\":\" 214\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jove-Journal of Visualized Experiments\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3791/67357\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67357","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Establishing a Swine Model to Study Uterus Dynamic Preservation and Transplantation.
To date, uterus transplantation is the only option for women with absolute uterine infertility, such as those with Rokitansky syndrome, to experience pregnancy and give birth. Despite the growing interest in uterus transplantation in recent years, several issues still require further research, including ischemia-reperfusion injury and its impact on graft quality and rejection. Recent literature has highlighted a thrombotic complication rate of up to 20% following uterus transplantation. This type of complication may result from hypoxia-induced endothelial cell damage, often leading to uterine graft rejection. Hypoxia is induced during static cold storage, which remains the gold standard for graft preservation in solid organ transplantation. Recently, dynamic preservation using machine perfusion has been shown to improve the long-term storage of conventional and marginal organs by reducing ischemic and hypoxic injury. In this protocol, we aim to describe every surgical step involved in porcine uterus procurement and dynamic preservation, based on both uterine pedicles, to enable the connection and initiation of the machine perfusion protocol.
期刊介绍:
JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.