小鼠眼模型视网膜缺血再灌注损伤的诱导。

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Nayan Sanjiv, Tat Fong Ng, Andrew W Taylor
{"title":"小鼠眼模型视网膜缺血再灌注损伤的诱导。","authors":"Nayan Sanjiv, Tat Fong Ng, Andrew W Taylor","doi":"10.3791/67030","DOIUrl":null,"url":null,"abstract":"<p><p>Ischemia-reperfusion injuries are known to cause a range of retinal pathologies, including diabetic retinopathy, glaucoma, retinal vascular occlusions, and other vaso-occlusive conditions. This manuscript presents a method for inducing ischemia-reperfusion injury in a mouse model. The method utilized anterior chamber cannulation attached to a saline reservoir, generating hydrostatic pressure to raise the intraocular pressure to 90-100 mmHg. This method effectively caused constriction of retinal capillaries to induce retinal ischemia. At the end of the ischemic period (60 min), the intraocular pressure was normalized (≤20 mmHg) before removing the cannula from the anterior chamber to initiate reperfusion. Days after the ischemia/reperfusion procedure, the eyes were collected and sectioned for histological staining. The histopathology of the retinal sections was scored by evaluating eight parameters of retinal injury: folds, hemorrhage, deformation, cell loss in the ganglion cell, inner nuclear, outer nuclear, and photoreceptor layers, and damage to retinal pigment epithelial cells. This method provided a reproducible model to study the mechanisms and pathology of retinal ischemia/reperfusion injury. In addition, this model can facilitate the discovery of potential therapeutic targets to treat retinal ischemia/reperfusion injury, advancing the study of retinal pathologies and improving patient outcomes.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 214","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Induction of Retinal Ischemia-Reperfusion Injury in a Mouse Eye Model.\",\"authors\":\"Nayan Sanjiv, Tat Fong Ng, Andrew W Taylor\",\"doi\":\"10.3791/67030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ischemia-reperfusion injuries are known to cause a range of retinal pathologies, including diabetic retinopathy, glaucoma, retinal vascular occlusions, and other vaso-occlusive conditions. This manuscript presents a method for inducing ischemia-reperfusion injury in a mouse model. The method utilized anterior chamber cannulation attached to a saline reservoir, generating hydrostatic pressure to raise the intraocular pressure to 90-100 mmHg. This method effectively caused constriction of retinal capillaries to induce retinal ischemia. At the end of the ischemic period (60 min), the intraocular pressure was normalized (≤20 mmHg) before removing the cannula from the anterior chamber to initiate reperfusion. Days after the ischemia/reperfusion procedure, the eyes were collected and sectioned for histological staining. The histopathology of the retinal sections was scored by evaluating eight parameters of retinal injury: folds, hemorrhage, deformation, cell loss in the ganglion cell, inner nuclear, outer nuclear, and photoreceptor layers, and damage to retinal pigment epithelial cells. This method provided a reproducible model to study the mechanisms and pathology of retinal ischemia/reperfusion injury. In addition, this model can facilitate the discovery of potential therapeutic targets to treat retinal ischemia/reperfusion injury, advancing the study of retinal pathologies and improving patient outcomes.</p>\",\"PeriodicalId\":48787,\"journal\":{\"name\":\"Jove-Journal of Visualized Experiments\",\"volume\":\" 214\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jove-Journal of Visualized Experiments\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3791/67030\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67030","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

缺血再灌注损伤可引起一系列视网膜病变,包括糖尿病视网膜病变、青光眼、视网膜血管闭塞和其他血管闭塞性疾病。本文提出了一种诱导小鼠缺血再灌注损伤的方法。该方法利用前房插管连接生理盐水储液池,产生静水压力,使眼压升高至90-100 mmHg。该方法有效地使视网膜毛细血管收缩,引起视网膜缺血。缺血期(60 min)结束时,眼压恢复正常(≤20 mmHg),取下前房插管开始再灌注。缺血再灌注后d,取眼切片进行组织学染色。通过评价视网膜损伤的8个参数:皱褶、出血、变形、神经节细胞、内核、外核和光感受器层细胞丢失、视网膜色素上皮细胞损伤,对视网膜切片进行组织病理学评分。该方法为研究视网膜缺血再灌注损伤的机制和病理提供了可重复性模型。此外,该模型有助于发现治疗视网膜缺血再灌注损伤的潜在治疗靶点,推进视网膜病理研究,改善患者预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Induction of Retinal Ischemia-Reperfusion Injury in a Mouse Eye Model.

Ischemia-reperfusion injuries are known to cause a range of retinal pathologies, including diabetic retinopathy, glaucoma, retinal vascular occlusions, and other vaso-occlusive conditions. This manuscript presents a method for inducing ischemia-reperfusion injury in a mouse model. The method utilized anterior chamber cannulation attached to a saline reservoir, generating hydrostatic pressure to raise the intraocular pressure to 90-100 mmHg. This method effectively caused constriction of retinal capillaries to induce retinal ischemia. At the end of the ischemic period (60 min), the intraocular pressure was normalized (≤20 mmHg) before removing the cannula from the anterior chamber to initiate reperfusion. Days after the ischemia/reperfusion procedure, the eyes were collected and sectioned for histological staining. The histopathology of the retinal sections was scored by evaluating eight parameters of retinal injury: folds, hemorrhage, deformation, cell loss in the ganglion cell, inner nuclear, outer nuclear, and photoreceptor layers, and damage to retinal pigment epithelial cells. This method provided a reproducible model to study the mechanisms and pathology of retinal ischemia/reperfusion injury. In addition, this model can facilitate the discovery of potential therapeutic targets to treat retinal ischemia/reperfusion injury, advancing the study of retinal pathologies and improving patient outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Jove-Journal of Visualized Experiments
Jove-Journal of Visualized Experiments MULTIDISCIPLINARY SCIENCES-
CiteScore
2.10
自引率
0.00%
发文量
992
期刊介绍: JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信