Jia-Wei Ren , Jin-Peng Zhang , Zi-Lun Mei , Jia-Yi Shao , Guo-Qiang Xu , Hui Li , Jin-Song Gong , Xiao-Mei Zhang , Jin-Song Shi , Xiao-juan Zhang , Zheng-hong Xu
{"title":"终止子的调控意义:一种系统的方法来解剖终止子介导的上游mRNA稳定性增强。","authors":"Jia-Wei Ren , Jin-Peng Zhang , Zi-Lun Mei , Jia-Yi Shao , Guo-Qiang Xu , Hui Li , Jin-Song Gong , Xiao-Mei Zhang , Jin-Song Shi , Xiao-juan Zhang , Zheng-hong Xu","doi":"10.1016/j.synbio.2024.11.006","DOIUrl":null,"url":null,"abstract":"<div><div>The primary function of terminators is to terminate transcription in gene expression. Although some studies have suggested that terminators also contribute positively to upstream gene expression, the extent and underlying mechanism of this effect remain largely unexplored. Here, the correlation between terminating strength and upstream mRNA stability was investigated by constructing a terminator mutation library through randomizing 5 nucleotides, assisted by FlowSeq technology, terminator variants were categorized based on the downstream fluorescence intensity, followed by high-throughput sequencing. To examine the impact of terminators on mRNA stability, the abundance of downstream gene transcripts for each terminator variant was quantified through cDNA sequencing. The results revealed that the transcript abundance controlled by strong terminators was, on average 2.2 times greater than those controlled by weak terminators on average. Moreover, several distinct features could be ascribed to high relative abundance of upstream gene transcript, including a high GC content at the base region of hairpin, and a high AT content in downstream of the U-tract. Additionally, these terminators showed a free energy between −28 and −22 kcal/mol, and a stem length of 14 nt. Finally, these features ascribed the upstream beneficial terminator were validated across various expression systems. By incorporating the optimal terminator downstream of RSF, GSH and HIS in three different strains, the fermentation productions-NMN SAM and VD13 exhibited a remarkable enhancement of 30 %–70 %. The findings presented here uncovered the terminator characteristics contributed to the upstream mRNA stability, providing guiding principles for gene circuit design.</div></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":"10 1","pages":"Pages 326-335"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696848/pdf/","citationCount":"0","resultStr":"{\"title\":\"Regulatory significance of terminator: A systematic approach for dissecting terminator-mediated enhancement of upstream mRNA stability\",\"authors\":\"Jia-Wei Ren , Jin-Peng Zhang , Zi-Lun Mei , Jia-Yi Shao , Guo-Qiang Xu , Hui Li , Jin-Song Gong , Xiao-Mei Zhang , Jin-Song Shi , Xiao-juan Zhang , Zheng-hong Xu\",\"doi\":\"10.1016/j.synbio.2024.11.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The primary function of terminators is to terminate transcription in gene expression. Although some studies have suggested that terminators also contribute positively to upstream gene expression, the extent and underlying mechanism of this effect remain largely unexplored. Here, the correlation between terminating strength and upstream mRNA stability was investigated by constructing a terminator mutation library through randomizing 5 nucleotides, assisted by FlowSeq technology, terminator variants were categorized based on the downstream fluorescence intensity, followed by high-throughput sequencing. To examine the impact of terminators on mRNA stability, the abundance of downstream gene transcripts for each terminator variant was quantified through cDNA sequencing. The results revealed that the transcript abundance controlled by strong terminators was, on average 2.2 times greater than those controlled by weak terminators on average. Moreover, several distinct features could be ascribed to high relative abundance of upstream gene transcript, including a high GC content at the base region of hairpin, and a high AT content in downstream of the U-tract. Additionally, these terminators showed a free energy between −28 and −22 kcal/mol, and a stem length of 14 nt. Finally, these features ascribed the upstream beneficial terminator were validated across various expression systems. By incorporating the optimal terminator downstream of RSF, GSH and HIS in three different strains, the fermentation productions-NMN SAM and VD13 exhibited a remarkable enhancement of 30 %–70 %. The findings presented here uncovered the terminator characteristics contributed to the upstream mRNA stability, providing guiding principles for gene circuit design.</div></div>\",\"PeriodicalId\":22148,\"journal\":{\"name\":\"Synthetic and Systems Biotechnology\",\"volume\":\"10 1\",\"pages\":\"Pages 326-335\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696848/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthetic and Systems Biotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405805X24001510\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic and Systems Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405805X24001510","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Regulatory significance of terminator: A systematic approach for dissecting terminator-mediated enhancement of upstream mRNA stability
The primary function of terminators is to terminate transcription in gene expression. Although some studies have suggested that terminators also contribute positively to upstream gene expression, the extent and underlying mechanism of this effect remain largely unexplored. Here, the correlation between terminating strength and upstream mRNA stability was investigated by constructing a terminator mutation library through randomizing 5 nucleotides, assisted by FlowSeq technology, terminator variants were categorized based on the downstream fluorescence intensity, followed by high-throughput sequencing. To examine the impact of terminators on mRNA stability, the abundance of downstream gene transcripts for each terminator variant was quantified through cDNA sequencing. The results revealed that the transcript abundance controlled by strong terminators was, on average 2.2 times greater than those controlled by weak terminators on average. Moreover, several distinct features could be ascribed to high relative abundance of upstream gene transcript, including a high GC content at the base region of hairpin, and a high AT content in downstream of the U-tract. Additionally, these terminators showed a free energy between −28 and −22 kcal/mol, and a stem length of 14 nt. Finally, these features ascribed the upstream beneficial terminator were validated across various expression systems. By incorporating the optimal terminator downstream of RSF, GSH and HIS in three different strains, the fermentation productions-NMN SAM and VD13 exhibited a remarkable enhancement of 30 %–70 %. The findings presented here uncovered the terminator characteristics contributed to the upstream mRNA stability, providing guiding principles for gene circuit design.
期刊介绍:
Synthetic and Systems Biotechnology aims to promote the communication of original research in synthetic and systems biology, with strong emphasis on applications towards biotechnology. This journal is a quarterly peer-reviewed journal led by Editor-in-Chief Lixin Zhang. The journal publishes high-quality research; focusing on integrative approaches to enable the understanding and design of biological systems, and research to develop the application of systems and synthetic biology to natural systems. This journal will publish Articles, Short notes, Methods, Mini Reviews, Commentary and Conference reviews.