ipsc衍生与sh - sy5y衍生人类神经元中TAU和MAP2的轴突靶向和微管极化。

IF 1.7 4区 生物学 Q3 BIOLOGY
Open Life Sciences Pub Date : 2024-12-31 eCollection Date: 2024-01-01 DOI:10.1515/biol-2022-1010
Helen Breuer, Michael Bell-Simons, Hans Zempel
{"title":"ipsc衍生与sh - sy5y衍生人类神经元中TAU和MAP2的轴突靶向和微管极化。","authors":"Helen Breuer, Michael Bell-Simons, Hans Zempel","doi":"10.1515/biol-2022-1010","DOIUrl":null,"url":null,"abstract":"<p><p>Cell polarity is crucial in neurons, characterized by distinct axonal and dendritic structures. Neurons generally have one long axon and multiple shorter dendrites, marked by specific microtubule (MT)-associated proteins, e.g., MAP2 for dendrites and TAU for axons, while the scaffolding proteins AnkG and TRIM46 mark the axon-initial-segment. In tauopathies, such as Alzheimer's disease (AD), TAU sorting, and neuronal polarity are disrupted, leading to MT loss. However, modeling and studying MTs in human neuronal cells relevant to the study of AD and TAU-related neurodegenerative diseases (NDD) is challenging. To study MT dynamics in human neurons, we compared two cell culture systems: SH-SY5Y-derived neurons (SHN) and induced pluripotent stem cell-derived neurons (iN). Using immunostaining and EB3-tdTomato time-lapse imaging, we found AnkG absent in SHN but present in iN, while TRIM46 was present in both. TAU and MAP2 showed axonal and dendritic enrichment, respectively, similar to mouse primary neurons. Both neuron types exhibited polarized MT structures, with unidirectional MTs in axons and bidirectional MTs in dendrites. Polymerization speeds were similar; however, iNs had more retrograde MT growth events, while SHN showed a higher overall number of growth events. Thus, SHN and iN are both suitable for studying neuronal cell polarity, with SHN being particularly suitable if the focus is <i>not</i> the AIS.</p>","PeriodicalId":19605,"journal":{"name":"Open Life Sciences","volume":"19 1","pages":"20221010"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699562/pdf/","citationCount":"0","resultStr":"{\"title\":\"Axodendritic targeting of TAU and MAP2 and microtubule polarization in iPSC-derived versus SH-SY5Y-derived human neurons.\",\"authors\":\"Helen Breuer, Michael Bell-Simons, Hans Zempel\",\"doi\":\"10.1515/biol-2022-1010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cell polarity is crucial in neurons, characterized by distinct axonal and dendritic structures. Neurons generally have one long axon and multiple shorter dendrites, marked by specific microtubule (MT)-associated proteins, e.g., MAP2 for dendrites and TAU for axons, while the scaffolding proteins AnkG and TRIM46 mark the axon-initial-segment. In tauopathies, such as Alzheimer's disease (AD), TAU sorting, and neuronal polarity are disrupted, leading to MT loss. However, modeling and studying MTs in human neuronal cells relevant to the study of AD and TAU-related neurodegenerative diseases (NDD) is challenging. To study MT dynamics in human neurons, we compared two cell culture systems: SH-SY5Y-derived neurons (SHN) and induced pluripotent stem cell-derived neurons (iN). Using immunostaining and EB3-tdTomato time-lapse imaging, we found AnkG absent in SHN but present in iN, while TRIM46 was present in both. TAU and MAP2 showed axonal and dendritic enrichment, respectively, similar to mouse primary neurons. Both neuron types exhibited polarized MT structures, with unidirectional MTs in axons and bidirectional MTs in dendrites. Polymerization speeds were similar; however, iNs had more retrograde MT growth events, while SHN showed a higher overall number of growth events. Thus, SHN and iN are both suitable for studying neuronal cell polarity, with SHN being particularly suitable if the focus is <i>not</i> the AIS.</p>\",\"PeriodicalId\":19605,\"journal\":{\"name\":\"Open Life Sciences\",\"volume\":\"19 1\",\"pages\":\"20221010\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699562/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1515/biol-2022-1010\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/biol-2022-1010","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细胞极性在神经元中是至关重要的,其特征是不同的轴突和树突结构。神经元通常具有一个长轴突和多个短树突,由特定的微管(MT)相关蛋白标记,例如树突的MAP2和轴突的TAU,而支架蛋白AnkG和TRIM46标记轴突初始段。在TAU病变中,如阿尔茨海默病(AD), TAU分选和神经元极性被破坏,导致MT丢失。然而,模拟和研究与AD和tau相关的神经退行性疾病(NDD)研究相关的人类神经元细胞中的mt是具有挑战性的。为了研究MT在人类神经元中的动态,我们比较了两种细胞培养系统:sh - sy5y来源的神经元(SHN)和诱导多能干细胞来源的神经元(in)。通过免疫染色和EB3-tdTomato延时成像,我们发现AnkG在SHN中不存在,而在in中存在,而TRIM46在两者中都存在。TAU和MAP2分别表现为轴突和树突富集,与小鼠原代神经元相似。两种类型的神经元都表现出极化的MT结构,轴突的单向MT和树突的双向MT。聚合速度相似;但iNs逆行MT生长事件较多,而SHN总体生长事件较多。因此,SHN和iN都适用于研究神经元细胞极性,当焦点不是AIS时,SHN尤其适用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Axodendritic targeting of TAU and MAP2 and microtubule polarization in iPSC-derived versus SH-SY5Y-derived human neurons.

Cell polarity is crucial in neurons, characterized by distinct axonal and dendritic structures. Neurons generally have one long axon and multiple shorter dendrites, marked by specific microtubule (MT)-associated proteins, e.g., MAP2 for dendrites and TAU for axons, while the scaffolding proteins AnkG and TRIM46 mark the axon-initial-segment. In tauopathies, such as Alzheimer's disease (AD), TAU sorting, and neuronal polarity are disrupted, leading to MT loss. However, modeling and studying MTs in human neuronal cells relevant to the study of AD and TAU-related neurodegenerative diseases (NDD) is challenging. To study MT dynamics in human neurons, we compared two cell culture systems: SH-SY5Y-derived neurons (SHN) and induced pluripotent stem cell-derived neurons (iN). Using immunostaining and EB3-tdTomato time-lapse imaging, we found AnkG absent in SHN but present in iN, while TRIM46 was present in both. TAU and MAP2 showed axonal and dendritic enrichment, respectively, similar to mouse primary neurons. Both neuron types exhibited polarized MT structures, with unidirectional MTs in axons and bidirectional MTs in dendrites. Polymerization speeds were similar; however, iNs had more retrograde MT growth events, while SHN showed a higher overall number of growth events. Thus, SHN and iN are both suitable for studying neuronal cell polarity, with SHN being particularly suitable if the focus is not the AIS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
4.50%
发文量
131
审稿时长
43 weeks
期刊介绍: Open Life Sciences (previously Central European Journal of Biology) is a fast growing peer-reviewed journal, devoted to scholarly research in all areas of life sciences, such as molecular biology, plant science, biotechnology, cell biology, biochemistry, biophysics, microbiology and virology, ecology, differentiation and development, genetics and many others. Open Life Sciences assures top quality of published data through critical peer review and editorial involvement throughout the whole publication process. Thanks to the Open Access model of publishing, it also offers unrestricted access to published articles for all users.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信