揭示大豆豆腐品质性状的遗传结构。

IF 2.6 3区 农林科学 Q1 AGRONOMY
Molecular Breeding Pub Date : 2025-01-03 eCollection Date: 2025-01-01 DOI:10.1007/s11032-024-01529-x
Cleo A Döttinger, Kim A Steige, Volker Hahn, Kristina Bachteler, Willmar L Leiser, Xintian Zhu, Tobias Würschum
{"title":"揭示大豆豆腐品质性状的遗传结构。","authors":"Cleo A Döttinger, Kim A Steige, Volker Hahn, Kristina Bachteler, Willmar L Leiser, Xintian Zhu, Tobias Würschum","doi":"10.1007/s11032-024-01529-x","DOIUrl":null,"url":null,"abstract":"<p><p>Tofu is a popular soybean (<i>Glycine max</i> (L.) Merr.) food with a long tradition in Asia and rising popularity worldwide, including Central Europe. Due to the labour-intensive phenotyping procedures, breeding for improved tofu quality is challenging. Therefore, our objective was to unravel the genetic architecture of traits relevant for tofu production in order to assess the potential of marker-assisted selection and genomic selection in breeding for these traits. To this end, we performed QTL mapping with 188 genotypes from a biparental mapping population. The population was evaluated in a two-location field trial, and tofu was produced in the laboratory to evaluate tofu quality. We identified QTL for all investigated agronomic and quality traits, each explaining between 6.40% and 27.55% of the genotypic variation, including the most important tofu quality traits, tofu yield and tofu hardness. Both traits showed a strong negative correlation (<i>r</i> = -0.65), and consequently a pleiotropic QTL on chromosome 10 was found with opposite effects on tofu hardness and tofu weight, highlighting the need to balance selection for both traits. Four QTL identified for tofu hardness jointly explained 68.7% of the genotypic variation and are possible targets for QTL stacking by marker-assisted selection. To exploit also small-effect QTL, genomic selection revealed moderate to high mean prediction accuracies for all traits, ranging from 0.47 to 0.78. In conclusion, inheritance of tofu quality traits is highly quantitative, and both marker-assisted selection and genomic selection present valuable tools to advance tofu quality by soybean breeding.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-024-01529-x.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 1","pages":"8"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699088/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unravelling the genetic architecture of soybean tofu quality traits.\",\"authors\":\"Cleo A Döttinger, Kim A Steige, Volker Hahn, Kristina Bachteler, Willmar L Leiser, Xintian Zhu, Tobias Würschum\",\"doi\":\"10.1007/s11032-024-01529-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tofu is a popular soybean (<i>Glycine max</i> (L.) Merr.) food with a long tradition in Asia and rising popularity worldwide, including Central Europe. Due to the labour-intensive phenotyping procedures, breeding for improved tofu quality is challenging. Therefore, our objective was to unravel the genetic architecture of traits relevant for tofu production in order to assess the potential of marker-assisted selection and genomic selection in breeding for these traits. To this end, we performed QTL mapping with 188 genotypes from a biparental mapping population. The population was evaluated in a two-location field trial, and tofu was produced in the laboratory to evaluate tofu quality. We identified QTL for all investigated agronomic and quality traits, each explaining between 6.40% and 27.55% of the genotypic variation, including the most important tofu quality traits, tofu yield and tofu hardness. Both traits showed a strong negative correlation (<i>r</i> = -0.65), and consequently a pleiotropic QTL on chromosome 10 was found with opposite effects on tofu hardness and tofu weight, highlighting the need to balance selection for both traits. Four QTL identified for tofu hardness jointly explained 68.7% of the genotypic variation and are possible targets for QTL stacking by marker-assisted selection. To exploit also small-effect QTL, genomic selection revealed moderate to high mean prediction accuracies for all traits, ranging from 0.47 to 0.78. In conclusion, inheritance of tofu quality traits is highly quantitative, and both marker-assisted selection and genomic selection present valuable tools to advance tofu quality by soybean breeding.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-024-01529-x.</p>\",\"PeriodicalId\":18769,\"journal\":{\"name\":\"Molecular Breeding\",\"volume\":\"45 1\",\"pages\":\"8\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699088/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Breeding\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11032-024-01529-x\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Breeding","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11032-024-01529-x","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

豆腐是一种受欢迎的大豆(甘氨酸max (L.))在亚洲有着悠久的传统,在包括中欧在内的世界各地越来越受欢迎。由于劳动密集型的表型过程,改良豆腐质量的育种是具有挑战性的。因此,我们的目标是揭示与豆腐生产相关的性状的遗传结构,以评估标记辅助选择和基因组选择在这些性状育种中的潜力。为此,我们对来自双亲本定位群体的188个基因型进行了QTL定位。在两个地点的田间试验中对种群进行了评估,并在实验室生产豆腐以评估豆腐的质量。我们确定了所有被调查的农艺和品质性状的QTL,每个QTL解释6.40% ~ 27.55%的基因型变异,包括最重要的豆腐品质性状、豆腐产量和豆腐硬度。这两个性状均表现出很强的负相关(r = -0.65),因此在第10染色体上发现的多效性QTL对豆腐硬度和豆腐重量的影响相反,这表明需要平衡选择这两个性状。鉴定出的4个豆腐硬度QTL共同解释了68.7%的基因型变异,是通过标记辅助选择进行QTL堆叠的可能目标。为了利用小效应QTL,基因组选择显示所有性状的平均预测精度在0.47 - 0.78之间,从中等到较高。总之,豆腐品质性状的遗传具有高度的定量,标记辅助选择和基因组选择都是大豆育种提高豆腐品质的重要工具。补充资料:在线版本包含补充资料,下载地址:10.1007/s11032-024-01529-x。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unravelling the genetic architecture of soybean tofu quality traits.

Tofu is a popular soybean (Glycine max (L.) Merr.) food with a long tradition in Asia and rising popularity worldwide, including Central Europe. Due to the labour-intensive phenotyping procedures, breeding for improved tofu quality is challenging. Therefore, our objective was to unravel the genetic architecture of traits relevant for tofu production in order to assess the potential of marker-assisted selection and genomic selection in breeding for these traits. To this end, we performed QTL mapping with 188 genotypes from a biparental mapping population. The population was evaluated in a two-location field trial, and tofu was produced in the laboratory to evaluate tofu quality. We identified QTL for all investigated agronomic and quality traits, each explaining between 6.40% and 27.55% of the genotypic variation, including the most important tofu quality traits, tofu yield and tofu hardness. Both traits showed a strong negative correlation (r = -0.65), and consequently a pleiotropic QTL on chromosome 10 was found with opposite effects on tofu hardness and tofu weight, highlighting the need to balance selection for both traits. Four QTL identified for tofu hardness jointly explained 68.7% of the genotypic variation and are possible targets for QTL stacking by marker-assisted selection. To exploit also small-effect QTL, genomic selection revealed moderate to high mean prediction accuracies for all traits, ranging from 0.47 to 0.78. In conclusion, inheritance of tofu quality traits is highly quantitative, and both marker-assisted selection and genomic selection present valuable tools to advance tofu quality by soybean breeding.

Supplementary information: The online version contains supplementary material available at 10.1007/s11032-024-01529-x.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Breeding
Molecular Breeding 农林科学-农艺学
CiteScore
5.60
自引率
6.50%
发文量
67
审稿时长
1.5 months
期刊介绍: Molecular Breeding is an international journal publishing papers on applications of plant molecular biology, i.e., research most likely leading to practical applications. The practical applications might relate to the Developing as well as the industrialised World and have demonstrable benefits for the seed industry, farmers, processing industry, the environment and the consumer. All papers published should contribute to the understanding and progress of modern plant breeding, encompassing the scientific disciplines of molecular biology, biochemistry, genetics, physiology, pathology, plant breeding, and ecology among others. Molecular Breeding welcomes the following categories of papers: full papers, short communications, papers describing novel methods and review papers. All submission will be subject to peer review ensuring the highest possible scientific quality standards. Molecular Breeding core areas: Molecular Breeding will consider manuscripts describing contemporary methods of molecular genetics and genomic analysis, structural and functional genomics in crops, proteomics and metabolic profiling, abiotic stress and field evaluation of transgenic crops containing particular traits. Manuscripts on marker assisted breeding are also of major interest, in particular novel approaches and new results of marker assisted breeding, QTL cloning, integration of conventional and marker assisted breeding, and QTL studies in crop plants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信