{"title":"一种评估韩国温室中抗生素抗性基因污染的潜在指示基因tetM。","authors":"Seunggyun Han, Raan Shin, Song-Hee Ryu, Tatsuya Unno, Hor-Gil Hur, Hanseob Shin","doi":"10.1264/jsme2.ME24053","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotic resistance genes (ARGs) have been emerging as a concerning threat to both environment and public health. The continuous input of manure, irrigation water, and fertilizers increases the abundance of ARGs in agricultural environments. However, current risk assessments have focused on clinical settings, which are not applicable to environmental settings. Therefore, we herein aimed to identify and assess indicator genes to reduce the time and effort required for ARG surveillance. A nationwide ana-lysis of 322 ARGs and 58 mobile genetic elements (MGEs) was performed on 42 greenhouse and 19 control soil samples. The chemical properties and pH of soil were also investigated to characterize differences between greenhouse and control soil samples. The results obtained showed that the abundance of ARGS was significantly higher and ion concentrations were higher in greenhouse samples than in control samples. These results indicate that agricultural activities increased the abundance of ARGs. Furthermore, the abundance of core genes was significantly higher in greenhouse samples than in control samples, and the chemical characteristics of soil significantly differed between these samples. Among the discriminatory genes selected, tetM was identified as an ARG surveillance indicator gene based on its clinical relevance, prevalence in the soil resistome, and relationship with mobile genetic elements. The present results will contribute to the continuous and rapid surveillance of antibiotic resistance dissemination and proliferation in greenhouses in South Korea.</p>","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":"39 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821766/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Potential Indicator Gene, tetM, to Assess Contamination by Antibiotic Resistance Genes in Greenhouses in South Korea.\",\"authors\":\"Seunggyun Han, Raan Shin, Song-Hee Ryu, Tatsuya Unno, Hor-Gil Hur, Hanseob Shin\",\"doi\":\"10.1264/jsme2.ME24053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antibiotic resistance genes (ARGs) have been emerging as a concerning threat to both environment and public health. The continuous input of manure, irrigation water, and fertilizers increases the abundance of ARGs in agricultural environments. However, current risk assessments have focused on clinical settings, which are not applicable to environmental settings. Therefore, we herein aimed to identify and assess indicator genes to reduce the time and effort required for ARG surveillance. A nationwide ana-lysis of 322 ARGs and 58 mobile genetic elements (MGEs) was performed on 42 greenhouse and 19 control soil samples. The chemical properties and pH of soil were also investigated to characterize differences between greenhouse and control soil samples. The results obtained showed that the abundance of ARGS was significantly higher and ion concentrations were higher in greenhouse samples than in control samples. These results indicate that agricultural activities increased the abundance of ARGs. Furthermore, the abundance of core genes was significantly higher in greenhouse samples than in control samples, and the chemical characteristics of soil significantly differed between these samples. Among the discriminatory genes selected, tetM was identified as an ARG surveillance indicator gene based on its clinical relevance, prevalence in the soil resistome, and relationship with mobile genetic elements. The present results will contribute to the continuous and rapid surveillance of antibiotic resistance dissemination and proliferation in greenhouses in South Korea.</p>\",\"PeriodicalId\":18482,\"journal\":{\"name\":\"Microbes and Environments\",\"volume\":\"39 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821766/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbes and Environments\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1264/jsme2.ME24053\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbes and Environments","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1264/jsme2.ME24053","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
A Potential Indicator Gene, tetM, to Assess Contamination by Antibiotic Resistance Genes in Greenhouses in South Korea.
Antibiotic resistance genes (ARGs) have been emerging as a concerning threat to both environment and public health. The continuous input of manure, irrigation water, and fertilizers increases the abundance of ARGs in agricultural environments. However, current risk assessments have focused on clinical settings, which are not applicable to environmental settings. Therefore, we herein aimed to identify and assess indicator genes to reduce the time and effort required for ARG surveillance. A nationwide ana-lysis of 322 ARGs and 58 mobile genetic elements (MGEs) was performed on 42 greenhouse and 19 control soil samples. The chemical properties and pH of soil were also investigated to characterize differences between greenhouse and control soil samples. The results obtained showed that the abundance of ARGS was significantly higher and ion concentrations were higher in greenhouse samples than in control samples. These results indicate that agricultural activities increased the abundance of ARGs. Furthermore, the abundance of core genes was significantly higher in greenhouse samples than in control samples, and the chemical characteristics of soil significantly differed between these samples. Among the discriminatory genes selected, tetM was identified as an ARG surveillance indicator gene based on its clinical relevance, prevalence in the soil resistome, and relationship with mobile genetic elements. The present results will contribute to the continuous and rapid surveillance of antibiotic resistance dissemination and proliferation in greenhouses in South Korea.
期刊介绍:
Microbial ecology in natural and engineered environments; Microbial degradation of xenobiotic compounds; Microbial processes in biogeochemical cycles; Microbial interactions and signaling with animals and plants; Interactions among microorganisms; Microorganisms related to public health; Phylogenetic and functional diversity of microbial communities; Genomics, metagenomics, and bioinformatics for microbiology; Application of microorganisms to agriculture, fishery, and industry; Molecular biology and biochemistry related to environmental microbiology; Methodology in general and environmental microbiology; Interdisciplinary research areas for microbial ecology (e.g., Astrobiology, and Origins of Life); Taxonomic description of novel microorganisms with ecological perspective; Physiology and metabolisms of microorganisms; Evolution of genes and microorganisms; Genome report of microorganisms with ecological perspective.