胃癌微环境中上皮细胞中心调控转录因子的识别与验证

IF 2.1 4区 医学 Q2 MEDICINE, GENERAL & INTERNAL
International Journal of General Medicine Pub Date : 2024-12-30 eCollection Date: 2024-01-01 DOI:10.2147/IJGM.S496006
Guomiao Su, Juan Wang, Shiyue Liu, Xiaonan Fu, Yanxi Li, Guoqing Pan
{"title":"胃癌微环境中上皮细胞中心调控转录因子的识别与验证","authors":"Guomiao Su, Juan Wang, Shiyue Liu, Xiaonan Fu, Yanxi Li, Guoqing Pan","doi":"10.2147/IJGM.S496006","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To identify the epithelial cell centre regulatory transcription factors in the gastric cancer (GC) microenvironment and provide a new strategy for the diagnosis and treatment of GC.</p><p><strong>Methods: </strong>The GC single-cell dataset was downloaded from the Gene Expression Omnibus (GEO) database. The regulatory mechanisms of transcription factors in both pan-cancer and GC microenvironments were analysed using the Cancer Genome Atlas (TGCA) database. Real-time quantitative PCR (RT-qPCR) was used to determine the mRNA expression levels of Prospero homeobox gene 1 (PROX1) and Endothelial PAS domain-containing protein 1 (EPAS1) in the human gastric mucosal normal epithelial cell line (GES-1) and the GC cell line (AGS). Immunohistochemistry (IHC) was used to determine the amounts of PROX1 and EPAS1 protein expression in GC and adjacent tissues. GC patients' overall survival (OS) was tracked through outpatient, Inpatient case inquiry, or phone follow-up.</p><p><strong>Results: </strong>The single-cell data from GSE184198 was re-annotated, resulting in nine cell subsets: T cells (13364), NK cells (606), B cells (2525), Epithelial cells (2497), DC cells (1167), Fibroblast cells (372), Endothelial cells (271), Neutrophils cells (246) and Macrophage cells (420). Analysis of cell subgroup signalling pathways revealed that communication intensity between epithelial cells and smooth muscle cells was highest. Transcription factors <i>PROX1</i> and <i>EPAS1</i> were notably active in epithelial cells. Cell communication analysis indicated that IFNG may interact with IFNGR1/2 and LIF with IL6ST and LIFR to regulate the downstream <i>PROX1</i> and <i>EPAS1. PROX1</i> and <i>EPAS1</i> were upregulated and negatively correlated with tumour mutation burden (TMB). <i>They</i> also exhibited high positive correlations with immune checkpoints CTLA4 and PDCD1LG2, as well as with chemokines CCL24 and CXCL12 and their receptors CCR3 and CCR4. Additionally, <i>PROX1</i> and <i>EPAS1</i> were positively correlated with immunosuppressive factors ADORA2A, CD160, IL10, TGFBR1, KDR and CSF1R, as well as with immunostimulators CD276, PVR, TNFRSF25, ULBP1, CXCL12 and ENTPD1. In GC tissues and AGS, PROX1 and EPAS1 were both substantially expressed. In the meantime, they showed a positive correlation with clinicopathological features such TNM stage and degree of differentiation. In GC patients, the up-regulated group's PROX1 and EPAS1 prognosis was noticeably poorer than the down-regulated group's.</p><p><strong>Conclusion: </strong><i>PROX1</i> and <i>EPAS1</i> are likely central regulatory transcription factors in the epithelial cells of the GC environment, regulated by IFNG and LIF. They may contribute to GC progression by modulating the tumour's immune microenvironment.</p>","PeriodicalId":14131,"journal":{"name":"International Journal of General Medicine","volume":"17 ","pages":"6567-6584"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697670/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification and Validation of Epithelial Cell Centre Regulatory Transcription Factors in the Gastric Cancer Microenvironment.\",\"authors\":\"Guomiao Su, Juan Wang, Shiyue Liu, Xiaonan Fu, Yanxi Li, Guoqing Pan\",\"doi\":\"10.2147/IJGM.S496006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To identify the epithelial cell centre regulatory transcription factors in the gastric cancer (GC) microenvironment and provide a new strategy for the diagnosis and treatment of GC.</p><p><strong>Methods: </strong>The GC single-cell dataset was downloaded from the Gene Expression Omnibus (GEO) database. The regulatory mechanisms of transcription factors in both pan-cancer and GC microenvironments were analysed using the Cancer Genome Atlas (TGCA) database. Real-time quantitative PCR (RT-qPCR) was used to determine the mRNA expression levels of Prospero homeobox gene 1 (PROX1) and Endothelial PAS domain-containing protein 1 (EPAS1) in the human gastric mucosal normal epithelial cell line (GES-1) and the GC cell line (AGS). Immunohistochemistry (IHC) was used to determine the amounts of PROX1 and EPAS1 protein expression in GC and adjacent tissues. GC patients' overall survival (OS) was tracked through outpatient, Inpatient case inquiry, or phone follow-up.</p><p><strong>Results: </strong>The single-cell data from GSE184198 was re-annotated, resulting in nine cell subsets: T cells (13364), NK cells (606), B cells (2525), Epithelial cells (2497), DC cells (1167), Fibroblast cells (372), Endothelial cells (271), Neutrophils cells (246) and Macrophage cells (420). Analysis of cell subgroup signalling pathways revealed that communication intensity between epithelial cells and smooth muscle cells was highest. Transcription factors <i>PROX1</i> and <i>EPAS1</i> were notably active in epithelial cells. Cell communication analysis indicated that IFNG may interact with IFNGR1/2 and LIF with IL6ST and LIFR to regulate the downstream <i>PROX1</i> and <i>EPAS1. PROX1</i> and <i>EPAS1</i> were upregulated and negatively correlated with tumour mutation burden (TMB). <i>They</i> also exhibited high positive correlations with immune checkpoints CTLA4 and PDCD1LG2, as well as with chemokines CCL24 and CXCL12 and their receptors CCR3 and CCR4. Additionally, <i>PROX1</i> and <i>EPAS1</i> were positively correlated with immunosuppressive factors ADORA2A, CD160, IL10, TGFBR1, KDR and CSF1R, as well as with immunostimulators CD276, PVR, TNFRSF25, ULBP1, CXCL12 and ENTPD1. In GC tissues and AGS, PROX1 and EPAS1 were both substantially expressed. In the meantime, they showed a positive correlation with clinicopathological features such TNM stage and degree of differentiation. In GC patients, the up-regulated group's PROX1 and EPAS1 prognosis was noticeably poorer than the down-regulated group's.</p><p><strong>Conclusion: </strong><i>PROX1</i> and <i>EPAS1</i> are likely central regulatory transcription factors in the epithelial cells of the GC environment, regulated by IFNG and LIF. They may contribute to GC progression by modulating the tumour's immune microenvironment.</p>\",\"PeriodicalId\":14131,\"journal\":{\"name\":\"International Journal of General Medicine\",\"volume\":\"17 \",\"pages\":\"6567-6584\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697670/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of General Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/IJGM.S496006\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of General Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJGM.S496006","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification and Validation of Epithelial Cell Centre Regulatory Transcription Factors in the Gastric Cancer Microenvironment.

Purpose: To identify the epithelial cell centre regulatory transcription factors in the gastric cancer (GC) microenvironment and provide a new strategy for the diagnosis and treatment of GC.

Methods: The GC single-cell dataset was downloaded from the Gene Expression Omnibus (GEO) database. The regulatory mechanisms of transcription factors in both pan-cancer and GC microenvironments were analysed using the Cancer Genome Atlas (TGCA) database. Real-time quantitative PCR (RT-qPCR) was used to determine the mRNA expression levels of Prospero homeobox gene 1 (PROX1) and Endothelial PAS domain-containing protein 1 (EPAS1) in the human gastric mucosal normal epithelial cell line (GES-1) and the GC cell line (AGS). Immunohistochemistry (IHC) was used to determine the amounts of PROX1 and EPAS1 protein expression in GC and adjacent tissues. GC patients' overall survival (OS) was tracked through outpatient, Inpatient case inquiry, or phone follow-up.

Results: The single-cell data from GSE184198 was re-annotated, resulting in nine cell subsets: T cells (13364), NK cells (606), B cells (2525), Epithelial cells (2497), DC cells (1167), Fibroblast cells (372), Endothelial cells (271), Neutrophils cells (246) and Macrophage cells (420). Analysis of cell subgroup signalling pathways revealed that communication intensity between epithelial cells and smooth muscle cells was highest. Transcription factors PROX1 and EPAS1 were notably active in epithelial cells. Cell communication analysis indicated that IFNG may interact with IFNGR1/2 and LIF with IL6ST and LIFR to regulate the downstream PROX1 and EPAS1. PROX1 and EPAS1 were upregulated and negatively correlated with tumour mutation burden (TMB). They also exhibited high positive correlations with immune checkpoints CTLA4 and PDCD1LG2, as well as with chemokines CCL24 and CXCL12 and their receptors CCR3 and CCR4. Additionally, PROX1 and EPAS1 were positively correlated with immunosuppressive factors ADORA2A, CD160, IL10, TGFBR1, KDR and CSF1R, as well as with immunostimulators CD276, PVR, TNFRSF25, ULBP1, CXCL12 and ENTPD1. In GC tissues and AGS, PROX1 and EPAS1 were both substantially expressed. In the meantime, they showed a positive correlation with clinicopathological features such TNM stage and degree of differentiation. In GC patients, the up-regulated group's PROX1 and EPAS1 prognosis was noticeably poorer than the down-regulated group's.

Conclusion: PROX1 and EPAS1 are likely central regulatory transcription factors in the epithelial cells of the GC environment, regulated by IFNG and LIF. They may contribute to GC progression by modulating the tumour's immune microenvironment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of General Medicine
International Journal of General Medicine Medicine-General Medicine
自引率
0.00%
发文量
1113
审稿时长
16 weeks
期刊介绍: The International Journal of General Medicine is an international, peer-reviewed, open access journal that focuses on general and internal medicine, pathogenesis, epidemiology, diagnosis, monitoring and treatment protocols. The journal is characterized by the rapid reporting of reviews, original research and clinical studies across all disease areas. A key focus of the journal is the elucidation of disease processes and management protocols resulting in improved outcomes for the patient. Patient perspectives such as satisfaction, quality of life, health literacy and communication and their role in developing new healthcare programs and optimizing clinical outcomes are major areas of interest for the journal. As of 1st April 2019, the International Journal of General Medicine will no longer consider meta-analyses for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信