Javier Vicente, Santiago Benito, Domingo Marquina, Antonio Santos
{"title":"耐温菌亚群特异性基因表达揭示了不同的代谢适应葡萄酒发酵。","authors":"Javier Vicente, Santiago Benito, Domingo Marquina, Antonio Santos","doi":"10.1016/j.crfs.2024.100954","DOIUrl":null,"url":null,"abstract":"<p><p>Gene expression is the first step in translating genetic information into quantifiable traits. This study analysed gene expression in 23 strains across six subpopulations of <i>Lachancea thermotolerans</i>, shaped by anthropization, under winemaking conditions to understand the impact of adaptation on transcriptomic profiles and fermentative performance, particularly regarding lactic acid production. Understanding the gene expression differences linked to lactic acid production could allow a more rational address of biological acidification while optimizing yeast-specific nutritional requirements during fermentation. By sequencing mRNA during exponential growth and fermentation in synthetic grape must, we identified unique expression patterns linked to the strains originated from wine-related environments. Global expression analysis revealed that anthropized subpopulations, particularly Europe/Domestic-2 and Europe-Mix, exhibited distinct gene expression profiles related to fermentation processes such as glycolysis and pyruvate metabolism. These processes were differentially expressed, along with other important biological processes during fermentation, such as nitrogen and fatty acid metabolism. This study highlights that anthropization has driven metabolic specialization in <i>L. thermotolerans</i>, enhancing traits like lactic acid production, which is a trait of interest in modern winemaking. Correlation analysis further linked lactic acid dehydrogenase genes with key metabolic pathways, indicating adaptive gene expression regulation. Additionally, differences in other metabolites of oenological interest as glycerol or aroma compounds production are highlighted. Here, we provide insights into the evolutionary processes shaping the transcriptomic diversity of <i>L. thermotolerans</i>, emphasizing the impact of winemaking environments on driving specific metabolic adaptations, including lactic acid production.</p>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"10 ","pages":"100954"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699796/pdf/","citationCount":"0","resultStr":"{\"title\":\"Subpopulation-specific gene expression in <i>Lachancea thermotolerans</i> uncovers distinct metabolic adaptations to wine fermentation.\",\"authors\":\"Javier Vicente, Santiago Benito, Domingo Marquina, Antonio Santos\",\"doi\":\"10.1016/j.crfs.2024.100954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gene expression is the first step in translating genetic information into quantifiable traits. This study analysed gene expression in 23 strains across six subpopulations of <i>Lachancea thermotolerans</i>, shaped by anthropization, under winemaking conditions to understand the impact of adaptation on transcriptomic profiles and fermentative performance, particularly regarding lactic acid production. Understanding the gene expression differences linked to lactic acid production could allow a more rational address of biological acidification while optimizing yeast-specific nutritional requirements during fermentation. By sequencing mRNA during exponential growth and fermentation in synthetic grape must, we identified unique expression patterns linked to the strains originated from wine-related environments. Global expression analysis revealed that anthropized subpopulations, particularly Europe/Domestic-2 and Europe-Mix, exhibited distinct gene expression profiles related to fermentation processes such as glycolysis and pyruvate metabolism. These processes were differentially expressed, along with other important biological processes during fermentation, such as nitrogen and fatty acid metabolism. This study highlights that anthropization has driven metabolic specialization in <i>L. thermotolerans</i>, enhancing traits like lactic acid production, which is a trait of interest in modern winemaking. Correlation analysis further linked lactic acid dehydrogenase genes with key metabolic pathways, indicating adaptive gene expression regulation. Additionally, differences in other metabolites of oenological interest as glycerol or aroma compounds production are highlighted. Here, we provide insights into the evolutionary processes shaping the transcriptomic diversity of <i>L. thermotolerans</i>, emphasizing the impact of winemaking environments on driving specific metabolic adaptations, including lactic acid production.</p>\",\"PeriodicalId\":10939,\"journal\":{\"name\":\"Current Research in Food Science\",\"volume\":\"10 \",\"pages\":\"100954\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699796/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Food Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.crfs.2024.100954\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Food Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.crfs.2024.100954","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Subpopulation-specific gene expression in Lachancea thermotolerans uncovers distinct metabolic adaptations to wine fermentation.
Gene expression is the first step in translating genetic information into quantifiable traits. This study analysed gene expression in 23 strains across six subpopulations of Lachancea thermotolerans, shaped by anthropization, under winemaking conditions to understand the impact of adaptation on transcriptomic profiles and fermentative performance, particularly regarding lactic acid production. Understanding the gene expression differences linked to lactic acid production could allow a more rational address of biological acidification while optimizing yeast-specific nutritional requirements during fermentation. By sequencing mRNA during exponential growth and fermentation in synthetic grape must, we identified unique expression patterns linked to the strains originated from wine-related environments. Global expression analysis revealed that anthropized subpopulations, particularly Europe/Domestic-2 and Europe-Mix, exhibited distinct gene expression profiles related to fermentation processes such as glycolysis and pyruvate metabolism. These processes were differentially expressed, along with other important biological processes during fermentation, such as nitrogen and fatty acid metabolism. This study highlights that anthropization has driven metabolic specialization in L. thermotolerans, enhancing traits like lactic acid production, which is a trait of interest in modern winemaking. Correlation analysis further linked lactic acid dehydrogenase genes with key metabolic pathways, indicating adaptive gene expression regulation. Additionally, differences in other metabolites of oenological interest as glycerol or aroma compounds production are highlighted. Here, we provide insights into the evolutionary processes shaping the transcriptomic diversity of L. thermotolerans, emphasizing the impact of winemaking environments on driving specific metabolic adaptations, including lactic acid production.
期刊介绍:
Current Research in Food Science is an international peer-reviewed journal dedicated to advancing the breadth of knowledge in the field of food science. It serves as a platform for publishing original research articles and short communications that encompass a wide array of topics, including food chemistry, physics, microbiology, nutrition, nutraceuticals, process and package engineering, materials science, food sustainability, and food security. By covering these diverse areas, the journal aims to provide a comprehensive source of the latest scientific findings and technological advancements that are shaping the future of the food industry. The journal's scope is designed to address the multidisciplinary nature of food science, reflecting its commitment to promoting innovation and ensuring the safety and quality of the food supply.