锌离子电池集流器的研究进展。

IF 7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hao Li, Le Li, Wanxin Liu, Shaofeng Jia, Shi Yue, Yuanyuan Yang, Conghui Wang, Chao Tan, Dan Zhang
{"title":"锌离子电池集流器的研究进展。","authors":"Hao Li, Le Li, Wanxin Liu, Shaofeng Jia, Shi Yue, Yuanyuan Yang, Conghui Wang, Chao Tan, Dan Zhang","doi":"10.1002/tcr.202400217","DOIUrl":null,"url":null,"abstract":"<p><p>Aqueous zinc-ion batteries (AZIBs) are promising options for large-scale electrical energy storage because of their safety, affordability, and environmental friendliness. As an indispensable component of AZIBs, a current collector plays a crucial role in supporting electrode materials and collecting the accumulated electrical energy. Recently, some progress has been made in the study of current collectors for AZIBs; however, only few comprehensive reviews on this topic are available. In this review, the systematic summary and discussion of research progress on current collectors for AZIBs is presented. Furthermore, the main challenges and key prospects for the future development of current collectors for AZIBs are discussed.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":" ","pages":"e202400217"},"PeriodicalIF":7.0000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Advances in Current Collectors for Aqueous Zinc-ion Batteries.\",\"authors\":\"Hao Li, Le Li, Wanxin Liu, Shaofeng Jia, Shi Yue, Yuanyuan Yang, Conghui Wang, Chao Tan, Dan Zhang\",\"doi\":\"10.1002/tcr.202400217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aqueous zinc-ion batteries (AZIBs) are promising options for large-scale electrical energy storage because of their safety, affordability, and environmental friendliness. As an indispensable component of AZIBs, a current collector plays a crucial role in supporting electrode materials and collecting the accumulated electrical energy. Recently, some progress has been made in the study of current collectors for AZIBs; however, only few comprehensive reviews on this topic are available. In this review, the systematic summary and discussion of research progress on current collectors for AZIBs is presented. Furthermore, the main challenges and key prospects for the future development of current collectors for AZIBs are discussed.</p>\",\"PeriodicalId\":10046,\"journal\":{\"name\":\"Chemical record\",\"volume\":\" \",\"pages\":\"e202400217\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical record\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/tcr.202400217\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical record","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/tcr.202400217","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

水性锌离子电池(azib)因其安全性、可负担性和环保性而成为大规模电能存储的有希望的选择。集流器作为azib不可缺少的组成部分,在支撑电极材料和收集积累的电能方面起着至关重要的作用。近年来,azib电流收集器的研究取得了一些进展;然而,关于这个主题的综合评论很少。本文对azib集流器的研究进展进行了系统的总结和讨论。此外,还讨论了azib电流收集器的主要挑战和未来发展的关键前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent Advances in Current Collectors for Aqueous Zinc-ion Batteries.

Aqueous zinc-ion batteries (AZIBs) are promising options for large-scale electrical energy storage because of their safety, affordability, and environmental friendliness. As an indispensable component of AZIBs, a current collector plays a crucial role in supporting electrode materials and collecting the accumulated electrical energy. Recently, some progress has been made in the study of current collectors for AZIBs; however, only few comprehensive reviews on this topic are available. In this review, the systematic summary and discussion of research progress on current collectors for AZIBs is presented. Furthermore, the main challenges and key prospects for the future development of current collectors for AZIBs are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical record
Chemical record 化学-化学综合
CiteScore
11.00
自引率
3.00%
发文量
188
审稿时长
>12 weeks
期刊介绍: The Chemical Record (TCR) is a "highlights" journal publishing timely and critical overviews of new developments at the cutting edge of chemistry of interest to a wide audience of chemists (2013 journal impact factor: 5.577). The scope of published reviews includes all areas related to physical chemistry, analytical chemistry, inorganic chemistry, organic chemistry, polymer chemistry, materials chemistry, bioorganic chemistry, biochemistry, biotechnology and medicinal chemistry as well as interdisciplinary fields. TCR provides carefully selected highlight papers by leading researchers that introduce the author''s own experimental and theoretical results in a framework designed to establish perspectives with earlier and contemporary work and provide a critical review of the present state of the subject. The articles are intended to present concise evaluations of current trends in chemistry research to help chemists gain useful insights into fields outside their specialization and provide experts with summaries of recent key developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信