Martha B Alvarez-Elizondo, Annat Raiter, Rinat Yerushalmi, Daphne Weihs
{"title":"化疗诱导的细胞表面GRP78表达作为转移性三阴性乳腺癌侵袭性的预后标志物","authors":"Martha B Alvarez-Elizondo, Annat Raiter, Rinat Yerushalmi, Daphne Weihs","doi":"10.1007/s10439-024-03673-z","DOIUrl":null,"url":null,"abstract":"<p><p>Metastasis remains the leading cause (90%) of cancer-related mortality, especially in metastatic triple-negative breast cancer (TNBC). Improved understanding of molecular drivers in the metastatic cascade is crucial, to find accurate prognostic markers for invasiveness after chemotherapy treatment. Current breast cancer chemotherapy treatments include doxorubicin and paclitaxel, inducing various effects, such as the unfolded protein response (UPR). The key regulator of the UPR is the 78-kDa glucose-regulated protein (GRP78), which is associated with metastatic disease, although, its expression level in the context of invasiveness is still controversial. We evaluate doxorubicin effects on TNBC cells, identifying GRP78 subpopulations linked to invasiveness. Specifically, we evaluate the motility and invasiveness of GRP78 positive vs. negative cell subpopulations by two different assays: the in vitro Boyden chamber migration assay and our innovative, rapid (2-3 h) clinically relevant, mechanobiology-based invasiveness assay. We validate chemotherapy-induced increase in the subpopulation of cell-surface GRP78(+) in two human, metastatic TNBC cell lines: MDA-MB-231 and MDA-MB-468. The GRP78(+) cell subpopulation exhibits reduced invasiveness and metastatic potential, as compared to whole-population control and to the GRP78(-) cell subpopulation, which are both highly invasive. Thus, using our innovative, clinically relevant assay, we rapidly (on clinical timescale) validate that GRP78(-) cells are likely linked with invasiveness, yet also demonstrate that combination of the GRP78(+) and GRP78(-) cells could increase the overall metastatic potential. Our results and approach could provide patient-personalized predictive marker for the expected benefits of chemotherapy in TNBC patients and potentially reveal non-responders to chemotherapy while also allowing evaluation of the clinical risk for metastasis.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemotherapy-Induced Cell-Surface GRP78 Expression as a Prognostic Marker for Invasiveness of Metastatic Triple-Negative Breast Cancer.\",\"authors\":\"Martha B Alvarez-Elizondo, Annat Raiter, Rinat Yerushalmi, Daphne Weihs\",\"doi\":\"10.1007/s10439-024-03673-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metastasis remains the leading cause (90%) of cancer-related mortality, especially in metastatic triple-negative breast cancer (TNBC). Improved understanding of molecular drivers in the metastatic cascade is crucial, to find accurate prognostic markers for invasiveness after chemotherapy treatment. Current breast cancer chemotherapy treatments include doxorubicin and paclitaxel, inducing various effects, such as the unfolded protein response (UPR). The key regulator of the UPR is the 78-kDa glucose-regulated protein (GRP78), which is associated with metastatic disease, although, its expression level in the context of invasiveness is still controversial. We evaluate doxorubicin effects on TNBC cells, identifying GRP78 subpopulations linked to invasiveness. Specifically, we evaluate the motility and invasiveness of GRP78 positive vs. negative cell subpopulations by two different assays: the in vitro Boyden chamber migration assay and our innovative, rapid (2-3 h) clinically relevant, mechanobiology-based invasiveness assay. We validate chemotherapy-induced increase in the subpopulation of cell-surface GRP78(+) in two human, metastatic TNBC cell lines: MDA-MB-231 and MDA-MB-468. The GRP78(+) cell subpopulation exhibits reduced invasiveness and metastatic potential, as compared to whole-population control and to the GRP78(-) cell subpopulation, which are both highly invasive. Thus, using our innovative, clinically relevant assay, we rapidly (on clinical timescale) validate that GRP78(-) cells are likely linked with invasiveness, yet also demonstrate that combination of the GRP78(+) and GRP78(-) cells could increase the overall metastatic potential. Our results and approach could provide patient-personalized predictive marker for the expected benefits of chemotherapy in TNBC patients and potentially reveal non-responders to chemotherapy while also allowing evaluation of the clinical risk for metastasis.</p>\",\"PeriodicalId\":7986,\"journal\":{\"name\":\"Annals of Biomedical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10439-024-03673-z\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10439-024-03673-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Chemotherapy-Induced Cell-Surface GRP78 Expression as a Prognostic Marker for Invasiveness of Metastatic Triple-Negative Breast Cancer.
Metastasis remains the leading cause (90%) of cancer-related mortality, especially in metastatic triple-negative breast cancer (TNBC). Improved understanding of molecular drivers in the metastatic cascade is crucial, to find accurate prognostic markers for invasiveness after chemotherapy treatment. Current breast cancer chemotherapy treatments include doxorubicin and paclitaxel, inducing various effects, such as the unfolded protein response (UPR). The key regulator of the UPR is the 78-kDa glucose-regulated protein (GRP78), which is associated with metastatic disease, although, its expression level in the context of invasiveness is still controversial. We evaluate doxorubicin effects on TNBC cells, identifying GRP78 subpopulations linked to invasiveness. Specifically, we evaluate the motility and invasiveness of GRP78 positive vs. negative cell subpopulations by two different assays: the in vitro Boyden chamber migration assay and our innovative, rapid (2-3 h) clinically relevant, mechanobiology-based invasiveness assay. We validate chemotherapy-induced increase in the subpopulation of cell-surface GRP78(+) in two human, metastatic TNBC cell lines: MDA-MB-231 and MDA-MB-468. The GRP78(+) cell subpopulation exhibits reduced invasiveness and metastatic potential, as compared to whole-population control and to the GRP78(-) cell subpopulation, which are both highly invasive. Thus, using our innovative, clinically relevant assay, we rapidly (on clinical timescale) validate that GRP78(-) cells are likely linked with invasiveness, yet also demonstrate that combination of the GRP78(+) and GRP78(-) cells could increase the overall metastatic potential. Our results and approach could provide patient-personalized predictive marker for the expected benefits of chemotherapy in TNBC patients and potentially reveal non-responders to chemotherapy while also allowing evaluation of the clinical risk for metastasis.
期刊介绍:
Annals of Biomedical Engineering is an official journal of the Biomedical Engineering Society, publishing original articles in the major fields of bioengineering and biomedical engineering. The Annals is an interdisciplinary and international journal with the aim to highlight integrated approaches to the solutions of biological and biomedical problems.