Xiao-jing Chen , Yu-ying Yang , Zheng-can Pan , Jing-zun Xu , Tao Jiang , Lin-lin Zhang , Ke-cheng Zhu , Deng Zhang , Jia-xi Song , Chun-xiang Sheng , Li-hao Sun , Bei Tao , Jian-min Liu , Hong-yan Zhao
{"title":"高血糖抑制PINK1/ drp1介导的线粒体自噬导致糖尿病成骨细胞生成受损。","authors":"Xiao-jing Chen , Yu-ying Yang , Zheng-can Pan , Jing-zun Xu , Tao Jiang , Lin-lin Zhang , Ke-cheng Zhu , Deng Zhang , Jia-xi Song , Chun-xiang Sheng , Li-hao Sun , Bei Tao , Jian-min Liu , Hong-yan Zhao","doi":"10.1016/j.isci.2024.111519","DOIUrl":null,"url":null,"abstract":"<div><div>Impaired bone quality and increased fracture risk are cardinal features of the skeleton in diabetes mellitus. Hyperglycemia-induced oxidative stress is proposed as a potential underlying mechanism, but the precise pathogenic mechanism remains incompletely understood. In this investigation, osteoblasts under high glucose exhibited heightened levels of reactive oxygen species, impaired mitochondrial membrane potential, and profound inhibition of late-stage osteoblast differentiation. Further analyses uncovered that high glucose resulted in the downregulation of the PINK1/Drp1 pathway in osteoblasts, consequently leading to impaired mitophagy. Conversely, the upregulation of PINK1/Drp1 pathway activated mitophagy, which restored the differentiation capacity of osteoblasts. Notably, in an STZ-induced diabetic mouse model, BMP9 upregulated the expression of PINK1/Drp1 in the bone tissue, leading to an improvement in bone quality and bone mineral density. These findings suggest that the PINK1/Drp1 pathway might be a potential therapeutic target to enhance osteogenic differentiation and treat diabetic osteoporosis.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"28 1","pages":"Article 111519"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699391/pdf/","citationCount":"0","resultStr":"{\"title\":\"The inhibition of PINK1/Drp1-mediated mitophagy by hyperglycemia leads to impaired osteoblastogenesis in diabetes\",\"authors\":\"Xiao-jing Chen , Yu-ying Yang , Zheng-can Pan , Jing-zun Xu , Tao Jiang , Lin-lin Zhang , Ke-cheng Zhu , Deng Zhang , Jia-xi Song , Chun-xiang Sheng , Li-hao Sun , Bei Tao , Jian-min Liu , Hong-yan Zhao\",\"doi\":\"10.1016/j.isci.2024.111519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Impaired bone quality and increased fracture risk are cardinal features of the skeleton in diabetes mellitus. Hyperglycemia-induced oxidative stress is proposed as a potential underlying mechanism, but the precise pathogenic mechanism remains incompletely understood. In this investigation, osteoblasts under high glucose exhibited heightened levels of reactive oxygen species, impaired mitochondrial membrane potential, and profound inhibition of late-stage osteoblast differentiation. Further analyses uncovered that high glucose resulted in the downregulation of the PINK1/Drp1 pathway in osteoblasts, consequently leading to impaired mitophagy. Conversely, the upregulation of PINK1/Drp1 pathway activated mitophagy, which restored the differentiation capacity of osteoblasts. Notably, in an STZ-induced diabetic mouse model, BMP9 upregulated the expression of PINK1/Drp1 in the bone tissue, leading to an improvement in bone quality and bone mineral density. These findings suggest that the PINK1/Drp1 pathway might be a potential therapeutic target to enhance osteogenic differentiation and treat diabetic osteoporosis.</div></div>\",\"PeriodicalId\":342,\"journal\":{\"name\":\"iScience\",\"volume\":\"28 1\",\"pages\":\"Article 111519\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699391/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iScience\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589004224027469\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589004224027469","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
The inhibition of PINK1/Drp1-mediated mitophagy by hyperglycemia leads to impaired osteoblastogenesis in diabetes
Impaired bone quality and increased fracture risk are cardinal features of the skeleton in diabetes mellitus. Hyperglycemia-induced oxidative stress is proposed as a potential underlying mechanism, but the precise pathogenic mechanism remains incompletely understood. In this investigation, osteoblasts under high glucose exhibited heightened levels of reactive oxygen species, impaired mitochondrial membrane potential, and profound inhibition of late-stage osteoblast differentiation. Further analyses uncovered that high glucose resulted in the downregulation of the PINK1/Drp1 pathway in osteoblasts, consequently leading to impaired mitophagy. Conversely, the upregulation of PINK1/Drp1 pathway activated mitophagy, which restored the differentiation capacity of osteoblasts. Notably, in an STZ-induced diabetic mouse model, BMP9 upregulated the expression of PINK1/Drp1 in the bone tissue, leading to an improvement in bone quality and bone mineral density. These findings suggest that the PINK1/Drp1 pathway might be a potential therapeutic target to enhance osteogenic differentiation and treat diabetic osteoporosis.
期刊介绍:
Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results.
We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.