Guanglei Yang , Tong Xu , Di Hao , Ruihong Zhu , Jiahui An , Yangsheng Chen , Li Xu , Bin Zhao , Heidi Qunhui Xie
{"title":"新兴污染物1,3,6,8-四溴咔唑对小鼠C2C12细胞成肌分化的二恶英样影响","authors":"Guanglei Yang , Tong Xu , Di Hao , Ruihong Zhu , Jiahui An , Yangsheng Chen , Li Xu , Bin Zhao , Heidi Qunhui Xie","doi":"10.1016/j.envres.2025.120758","DOIUrl":null,"url":null,"abstract":"<div><div>1,3,6,8-Tetrabromocarbazole (1368-BCZ) has been proposed as an emerging environmental contaminant which has aryl hydrocarbon receptor (AhR) activating properties analogous to those of dioxins. Skeletal muscle development is a critical target of dioxin toxicity. However, the impact of 1368-BCZ on muscle development is inadequately understood. The C2C12 mouse myoblast cell is extensively utilized as an <em>in vitro</em> model for studying myogenesis. In the present study, we observed that treatment with 1368-BCZ inhibited myogenic myoblast differentiation in a concentration-dependent manner, without inducing cytotoxicity. Using flow cytometry analysis and a wound healing assay, we found that the cell cycle exit and migratory activity were blocked in 1368-BCZ-treated cells at the early stage of C2C12 differentiation. In line with this alteration, 1368-BCZ significantly upregulated the expression of cell cycle regulators and migration-related genes, whereas it suppressed the expression of myogenic regulatory factors (MRFs) and skeletal muscle myosin isoforms (MYH3 and MYH4), marker genes for myogenesis. Furthermore, treatment with 1368-BCZ activated the AhR signaling pathway, leading to the transcriptional upregulation of AhR-target genes, CYP1A1 and CYP1B1. Silencing AhR mitigated the inhibitory effects of 1368-BCZ on C2C12 differentiation and significantly enhanced the formation of multi-nucleated myotubes through the upregulation of MRFs expression. Taken together, our study suggests that 1368-BCZ exerts an inhibitory effect on myogenesis in C2C12 cells through an AhR-dependent regulatory mechanism, which is highly similar to the observed dioxin effect.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"268 ","pages":"Article 120758"},"PeriodicalIF":7.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dioxin-like effects of an emerging contaminant 1,3,6,8-tetrabromocarbazole on the myogenic differentiation of mouse C2C12 cells\",\"authors\":\"Guanglei Yang , Tong Xu , Di Hao , Ruihong Zhu , Jiahui An , Yangsheng Chen , Li Xu , Bin Zhao , Heidi Qunhui Xie\",\"doi\":\"10.1016/j.envres.2025.120758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>1,3,6,8-Tetrabromocarbazole (1368-BCZ) has been proposed as an emerging environmental contaminant which has aryl hydrocarbon receptor (AhR) activating properties analogous to those of dioxins. Skeletal muscle development is a critical target of dioxin toxicity. However, the impact of 1368-BCZ on muscle development is inadequately understood. The C2C12 mouse myoblast cell is extensively utilized as an <em>in vitro</em> model for studying myogenesis. In the present study, we observed that treatment with 1368-BCZ inhibited myogenic myoblast differentiation in a concentration-dependent manner, without inducing cytotoxicity. Using flow cytometry analysis and a wound healing assay, we found that the cell cycle exit and migratory activity were blocked in 1368-BCZ-treated cells at the early stage of C2C12 differentiation. In line with this alteration, 1368-BCZ significantly upregulated the expression of cell cycle regulators and migration-related genes, whereas it suppressed the expression of myogenic regulatory factors (MRFs) and skeletal muscle myosin isoforms (MYH3 and MYH4), marker genes for myogenesis. Furthermore, treatment with 1368-BCZ activated the AhR signaling pathway, leading to the transcriptional upregulation of AhR-target genes, CYP1A1 and CYP1B1. Silencing AhR mitigated the inhibitory effects of 1368-BCZ on C2C12 differentiation and significantly enhanced the formation of multi-nucleated myotubes through the upregulation of MRFs expression. Taken together, our study suggests that 1368-BCZ exerts an inhibitory effect on myogenesis in C2C12 cells through an AhR-dependent regulatory mechanism, which is highly similar to the observed dioxin effect.</div></div>\",\"PeriodicalId\":312,\"journal\":{\"name\":\"Environmental Research\",\"volume\":\"268 \",\"pages\":\"Article 120758\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001393512500009X\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001393512500009X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Dioxin-like effects of an emerging contaminant 1,3,6,8-tetrabromocarbazole on the myogenic differentiation of mouse C2C12 cells
1,3,6,8-Tetrabromocarbazole (1368-BCZ) has been proposed as an emerging environmental contaminant which has aryl hydrocarbon receptor (AhR) activating properties analogous to those of dioxins. Skeletal muscle development is a critical target of dioxin toxicity. However, the impact of 1368-BCZ on muscle development is inadequately understood. The C2C12 mouse myoblast cell is extensively utilized as an in vitro model for studying myogenesis. In the present study, we observed that treatment with 1368-BCZ inhibited myogenic myoblast differentiation in a concentration-dependent manner, without inducing cytotoxicity. Using flow cytometry analysis and a wound healing assay, we found that the cell cycle exit and migratory activity were blocked in 1368-BCZ-treated cells at the early stage of C2C12 differentiation. In line with this alteration, 1368-BCZ significantly upregulated the expression of cell cycle regulators and migration-related genes, whereas it suppressed the expression of myogenic regulatory factors (MRFs) and skeletal muscle myosin isoforms (MYH3 and MYH4), marker genes for myogenesis. Furthermore, treatment with 1368-BCZ activated the AhR signaling pathway, leading to the transcriptional upregulation of AhR-target genes, CYP1A1 and CYP1B1. Silencing AhR mitigated the inhibitory effects of 1368-BCZ on C2C12 differentiation and significantly enhanced the formation of multi-nucleated myotubes through the upregulation of MRFs expression. Taken together, our study suggests that 1368-BCZ exerts an inhibitory effect on myogenesis in C2C12 cells through an AhR-dependent regulatory mechanism, which is highly similar to the observed dioxin effect.
期刊介绍:
The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.