基于杂交链反应和银纳米团簇的生物传感器研究进展。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Zheng Wei Wong, Siu Yee New
{"title":"基于杂交链反应和银纳米团簇的生物传感器研究进展。","authors":"Zheng Wei Wong, Siu Yee New","doi":"10.1002/smtd.202401436","DOIUrl":null,"url":null,"abstract":"<p><p>Hybridization chain reaction (HCR) and DNA-templated silver nanoclusters (AgNCs) have emerged as powerful tools in biosensing. HCR enables cascade amplification through programmable DNA interactions, while DNA-AgNCs serve as transducing units with unique fluorogenic and electrochemical properties. Integrating these components into a hybrid sensor could significantly enhance sensing capabilities across various fields. Nonetheless, limited studies and the lack of systematic guidelines for HCR-AgNCs systems have hindered research progress, despite their potential. This review aims to address this gap by providing a comprehensive overview of HCR-AgNCs biosensors, facilitating further innovation in this field. The working principles, performance factors, and complementary features are discussed. Thereafter, reported HCR-AgNCs studies are assessed, emphasizing their distinct sensing mechanisms (e.g., fluorogenic, electrochemical), applications across various fields, and challenges in adopting the hybrid sensors. Drawing from the experience developing multiple HCR-AgNCs sensors, insights and guidelines for designing and developing HCR-AgNCs systems are provided for future researchers. Finally, prospective directions in HCR-AgNCs research, including multiplex assays and integration with emerging technologies, are explored to guide future advancements. The synergistic combination of HCR and AgNCs as a hybrid biosensor holds promise for addressing pressing challenges in healthcare, environmental monitoring, and beyond, paving the way for next-generation biosensing technologies.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401436"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Advances in Biosensors Based on Hybridization Chain Reaction and Silver Nanoclusters.\",\"authors\":\"Zheng Wei Wong, Siu Yee New\",\"doi\":\"10.1002/smtd.202401436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hybridization chain reaction (HCR) and DNA-templated silver nanoclusters (AgNCs) have emerged as powerful tools in biosensing. HCR enables cascade amplification through programmable DNA interactions, while DNA-AgNCs serve as transducing units with unique fluorogenic and electrochemical properties. Integrating these components into a hybrid sensor could significantly enhance sensing capabilities across various fields. Nonetheless, limited studies and the lack of systematic guidelines for HCR-AgNCs systems have hindered research progress, despite their potential. This review aims to address this gap by providing a comprehensive overview of HCR-AgNCs biosensors, facilitating further innovation in this field. The working principles, performance factors, and complementary features are discussed. Thereafter, reported HCR-AgNCs studies are assessed, emphasizing their distinct sensing mechanisms (e.g., fluorogenic, electrochemical), applications across various fields, and challenges in adopting the hybrid sensors. Drawing from the experience developing multiple HCR-AgNCs sensors, insights and guidelines for designing and developing HCR-AgNCs systems are provided for future researchers. Finally, prospective directions in HCR-AgNCs research, including multiplex assays and integration with emerging technologies, are explored to guide future advancements. The synergistic combination of HCR and AgNCs as a hybrid biosensor holds promise for addressing pressing challenges in healthcare, environmental monitoring, and beyond, paving the way for next-generation biosensing technologies.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2401436\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202401436\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401436","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

杂交链反应(HCR)和dna模板银纳米团簇(agnc)已成为生物传感领域的有力工具。HCR通过可编程DNA相互作用实现级联扩增,而DNA- agnc作为具有独特荧光和电化学特性的转导单元。将这些组件集成到混合传感器中可以显着提高各个领域的传感能力。然而,尽管hcr - agnc系统具有潜力,但有限的研究和缺乏系统指南阻碍了研究进展。本文旨在通过对hcr - agnc生物传感器的全面概述来解决这一空白,促进该领域的进一步创新。讨论了其工作原理、性能因素和互补特性。随后,对已报道的hcr - agnc研究进行了评估,强调了它们不同的传感机制(如荧光、电化学)、在各个领域的应用以及采用混合传感器的挑战。从开发多种hcr - agnc传感器的经验中,为未来的研究人员提供了设计和开发hcr - agnc系统的见解和指南。最后,探讨了hcr - agnc研究的未来方向,包括多重检测和与新兴技术的整合,以指导未来的进展。HCR和agnc作为混合生物传感器的协同组合有望解决医疗保健、环境监测等领域的紧迫挑战,为下一代生物传感技术铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent Advances in Biosensors Based on Hybridization Chain Reaction and Silver Nanoclusters.

Hybridization chain reaction (HCR) and DNA-templated silver nanoclusters (AgNCs) have emerged as powerful tools in biosensing. HCR enables cascade amplification through programmable DNA interactions, while DNA-AgNCs serve as transducing units with unique fluorogenic and electrochemical properties. Integrating these components into a hybrid sensor could significantly enhance sensing capabilities across various fields. Nonetheless, limited studies and the lack of systematic guidelines for HCR-AgNCs systems have hindered research progress, despite their potential. This review aims to address this gap by providing a comprehensive overview of HCR-AgNCs biosensors, facilitating further innovation in this field. The working principles, performance factors, and complementary features are discussed. Thereafter, reported HCR-AgNCs studies are assessed, emphasizing their distinct sensing mechanisms (e.g., fluorogenic, electrochemical), applications across various fields, and challenges in adopting the hybrid sensors. Drawing from the experience developing multiple HCR-AgNCs sensors, insights and guidelines for designing and developing HCR-AgNCs systems are provided for future researchers. Finally, prospective directions in HCR-AgNCs research, including multiplex assays and integration with emerging technologies, are explored to guide future advancements. The synergistic combination of HCR and AgNCs as a hybrid biosensor holds promise for addressing pressing challenges in healthcare, environmental monitoring, and beyond, paving the way for next-generation biosensing technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信