气孔和水力冗余使木本物种适应干旱环境。

IF 6 1区 生物学 Q1 PLANT SCIENCES
Guang-Qian Yao, Yan-Ru Li, Yu-Na Duan, Shun-Ping Han, Zi-Jian Deng, Di Yang, Xue-Qian Tian, Feng-Ping Li, Md Mahadi Hasan, Xiang-Wen Fang
{"title":"气孔和水力冗余使木本物种适应干旱环境。","authors":"Guang-Qian Yao, Yan-Ru Li, Yu-Na Duan, Shun-Ping Han, Zi-Jian Deng, Di Yang, Xue-Qian Tian, Feng-Ping Li, Md Mahadi Hasan, Xiang-Wen Fang","doi":"10.1111/pce.15362","DOIUrl":null,"url":null,"abstract":"<p><p>Functional redundancy is considered a pivotal mechanism for maintaining the adaptability of species by preventing the loss of key functions in response to dehydration. However, we still lack a comprehensive understanding of the redundancy of leaf hydraulic systems along aridity gradients. Here, photosynthesis (A<sub>n</sub>), stomatal conductance (g<sub>s</sub>) and leaf hydraulic conductance (K<sub>leaf</sub>) during dehydration were measured in 20 woody species from a range of aridity index (AI) conditions and growing in a common garden to quantify stomatal redundancy (SR), the extent of stomatal opening beyond the optimum required for maximum photosynthesis (A<sub>max</sub>), leaf hydraulic redundancy (HR), and the extent of leaf hydraulic conductance (K<sub>leaf</sub>) beyond the optimum required for maximum g<sub>s</sub> (g<sub>s-max</sub>). The findings revealed that species from arid habitats tended to have higher SRs but lower HRs than did species from humid habitats. The relatively high SR in arid species arose from relatively high g<sub>s-max</sub> values. The relatively low HR arose from the relatively high K<sub>leaf</sub> value at a 5% reduction in g<sub>s-max</sub> (K<sub>leaf-gs</sub>). Our results suggest that greater stomatal redundancy and lower hydraulic redundancy prevent the loss of photosynthesis and water transportation, respectively, and thus might be the key adaptive mechanisms for plants to adapt to drought conditions.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stomatal and Hydraulic Redundancy Allows Woody Species to Adapt to Arid Environments.\",\"authors\":\"Guang-Qian Yao, Yan-Ru Li, Yu-Na Duan, Shun-Ping Han, Zi-Jian Deng, Di Yang, Xue-Qian Tian, Feng-Ping Li, Md Mahadi Hasan, Xiang-Wen Fang\",\"doi\":\"10.1111/pce.15362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Functional redundancy is considered a pivotal mechanism for maintaining the adaptability of species by preventing the loss of key functions in response to dehydration. However, we still lack a comprehensive understanding of the redundancy of leaf hydraulic systems along aridity gradients. Here, photosynthesis (A<sub>n</sub>), stomatal conductance (g<sub>s</sub>) and leaf hydraulic conductance (K<sub>leaf</sub>) during dehydration were measured in 20 woody species from a range of aridity index (AI) conditions and growing in a common garden to quantify stomatal redundancy (SR), the extent of stomatal opening beyond the optimum required for maximum photosynthesis (A<sub>max</sub>), leaf hydraulic redundancy (HR), and the extent of leaf hydraulic conductance (K<sub>leaf</sub>) beyond the optimum required for maximum g<sub>s</sub> (g<sub>s-max</sub>). The findings revealed that species from arid habitats tended to have higher SRs but lower HRs than did species from humid habitats. The relatively high SR in arid species arose from relatively high g<sub>s-max</sub> values. The relatively low HR arose from the relatively high K<sub>leaf</sub> value at a 5% reduction in g<sub>s-max</sub> (K<sub>leaf-gs</sub>). Our results suggest that greater stomatal redundancy and lower hydraulic redundancy prevent the loss of photosynthesis and water transportation, respectively, and thus might be the key adaptive mechanisms for plants to adapt to drought conditions.</p>\",\"PeriodicalId\":222,\"journal\":{\"name\":\"Plant, Cell & Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant, Cell & Environment\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/pce.15362\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15362","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

功能冗余被认为是维持物种适应性的关键机制,它可以防止物种在脱水时丧失关键功能。然而,我们仍然缺乏对干旱梯度上叶片水力系统冗余性的全面了解。在此,我们测量了生长在不同干旱指数(AI)条件下的20种木本植物在脱水过程中的光合作用(An)、气孔导度(gs)和叶片水力导度(Kleaf),以量化气孔冗余(SR)、超出最大光合作用(Amax)所需最佳值的气孔开放程度、叶片水力冗余(HR)和超出最大gs(gs-max)所需最佳值的叶片水力导度(Kleaf)。研究结果表明,与湿润生境的物种相比,干旱生境的物种往往具有较高的 SR,但较低的 HR。干旱物种的 SR 相对较高是因为 gs-max 值相对较高。相对较低的 HR 来自于 gs-max 降低 5%(Kleaf-gs)时相对较高的 Kleaf 值。我们的研究结果表明,较高的气孔冗余度和较低的水力冗余度可分别防止光合作用和水分运输的损失,因此可能是植物适应干旱条件的关键适应机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stomatal and Hydraulic Redundancy Allows Woody Species to Adapt to Arid Environments.

Functional redundancy is considered a pivotal mechanism for maintaining the adaptability of species by preventing the loss of key functions in response to dehydration. However, we still lack a comprehensive understanding of the redundancy of leaf hydraulic systems along aridity gradients. Here, photosynthesis (An), stomatal conductance (gs) and leaf hydraulic conductance (Kleaf) during dehydration were measured in 20 woody species from a range of aridity index (AI) conditions and growing in a common garden to quantify stomatal redundancy (SR), the extent of stomatal opening beyond the optimum required for maximum photosynthesis (Amax), leaf hydraulic redundancy (HR), and the extent of leaf hydraulic conductance (Kleaf) beyond the optimum required for maximum gs (gs-max). The findings revealed that species from arid habitats tended to have higher SRs but lower HRs than did species from humid habitats. The relatively high SR in arid species arose from relatively high gs-max values. The relatively low HR arose from the relatively high Kleaf value at a 5% reduction in gs-max (Kleaf-gs). Our results suggest that greater stomatal redundancy and lower hydraulic redundancy prevent the loss of photosynthesis and water transportation, respectively, and thus might be the key adaptive mechanisms for plants to adapt to drought conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信