{"title":"缓激肽通过调节PI3K/AKT/mTOR信号通路,减弱niso4诱导的MIN6细胞自噬,保护小鼠胰岛功能。","authors":"Zhuanping Wang , Hui Chen","doi":"10.1016/j.bbrc.2024.151265","DOIUrl":null,"url":null,"abstract":"<div><div>Previous studies have shown that nickel sulfate (NiSO<sub>4</sub>) increases autophagy in thyroid cells and tissues. As an important organ of the endocrine system, the pancreas not only contributes to the exocrine function of digestion but also has the endocrine function of regulating blood sugar. However, it remains unknown whether NiSO<sub>4</sub> increases pancreatic autophagy. Bradykinin (BK) is an important component of the kallikrein–kinin system (KKS) and has many biological functions, such as reducing autophagy. The purpose of the present study was to explore the effects of BK on NiSO<sub>4</sub>-induced changes in pancreatic endocrine function. The present results demonstrate that NiSO<sub>4</sub> increases fasting blood glucose (FBG) within a certain range and decreases insulin levels in mice. Moreover, NiSO<sub>4</sub> triggers incomplete autophagy in MIN6 cells by upregulating microtubule-associated protein 1 light chain 3-II (LC3II) and Beclin 1 but downregulating p62. Mechanistically, NiSO<sub>4</sub> leads to abnormal activation of autophagy by inhibiting the PI3K/AKT/mTOR signaling pathway. Moreover, BK decreases FBG and increases insulin secretion in mice exposed to NiSO<sub>4</sub>. Light microscopy and transmission electron microscopy (TEM) analyses revealed that BK pretreatment partially restores MIN6 cell viability and decreases the number of autophagic bodies. BK significantly upregulates the protein levels of LC3II and Beclin1 but downregulates p62 in NiSO<sub>4</sub>-induced MIN6 cells. In addition, BK increases the levels of phosphorylated phosphatidylinositol 3-kinase (P-PI3K), phosphorylated protein kinase B (P-AKT) and mammalian target of rapamycin (mTOR). Most of these effects of BK are reversed by treatment with the HOE140 B2R inhibitor. The present results suggested that BK ameliorates NiSO<sub>4</sub>-induced pancreatic β-cell dysfunction through B2R-mediated activation of the PI3K/AKT/mTOR signaling pathway and inhibition of autophagy.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"746 ","pages":"Article 151265"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bradykinin attenuates NiSO4-induced autophagy in MIN6 cells and protects islet function in mice by regulating the PI3K/AKT/mTOR signaling pathway\",\"authors\":\"Zhuanping Wang , Hui Chen\",\"doi\":\"10.1016/j.bbrc.2024.151265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Previous studies have shown that nickel sulfate (NiSO<sub>4</sub>) increases autophagy in thyroid cells and tissues. As an important organ of the endocrine system, the pancreas not only contributes to the exocrine function of digestion but also has the endocrine function of regulating blood sugar. However, it remains unknown whether NiSO<sub>4</sub> increases pancreatic autophagy. Bradykinin (BK) is an important component of the kallikrein–kinin system (KKS) and has many biological functions, such as reducing autophagy. The purpose of the present study was to explore the effects of BK on NiSO<sub>4</sub>-induced changes in pancreatic endocrine function. The present results demonstrate that NiSO<sub>4</sub> increases fasting blood glucose (FBG) within a certain range and decreases insulin levels in mice. Moreover, NiSO<sub>4</sub> triggers incomplete autophagy in MIN6 cells by upregulating microtubule-associated protein 1 light chain 3-II (LC3II) and Beclin 1 but downregulating p62. Mechanistically, NiSO<sub>4</sub> leads to abnormal activation of autophagy by inhibiting the PI3K/AKT/mTOR signaling pathway. Moreover, BK decreases FBG and increases insulin secretion in mice exposed to NiSO<sub>4</sub>. Light microscopy and transmission electron microscopy (TEM) analyses revealed that BK pretreatment partially restores MIN6 cell viability and decreases the number of autophagic bodies. BK significantly upregulates the protein levels of LC3II and Beclin1 but downregulates p62 in NiSO<sub>4</sub>-induced MIN6 cells. In addition, BK increases the levels of phosphorylated phosphatidylinositol 3-kinase (P-PI3K), phosphorylated protein kinase B (P-AKT) and mammalian target of rapamycin (mTOR). Most of these effects of BK are reversed by treatment with the HOE140 B2R inhibitor. The present results suggested that BK ameliorates NiSO<sub>4</sub>-induced pancreatic β-cell dysfunction through B2R-mediated activation of the PI3K/AKT/mTOR signaling pathway and inhibition of autophagy.</div></div>\",\"PeriodicalId\":8779,\"journal\":{\"name\":\"Biochemical and biophysical research communications\",\"volume\":\"746 \",\"pages\":\"Article 151265\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical and biophysical research communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006291X24018011\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X24018011","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Bradykinin attenuates NiSO4-induced autophagy in MIN6 cells and protects islet function in mice by regulating the PI3K/AKT/mTOR signaling pathway
Previous studies have shown that nickel sulfate (NiSO4) increases autophagy in thyroid cells and tissues. As an important organ of the endocrine system, the pancreas not only contributes to the exocrine function of digestion but also has the endocrine function of regulating blood sugar. However, it remains unknown whether NiSO4 increases pancreatic autophagy. Bradykinin (BK) is an important component of the kallikrein–kinin system (KKS) and has many biological functions, such as reducing autophagy. The purpose of the present study was to explore the effects of BK on NiSO4-induced changes in pancreatic endocrine function. The present results demonstrate that NiSO4 increases fasting blood glucose (FBG) within a certain range and decreases insulin levels in mice. Moreover, NiSO4 triggers incomplete autophagy in MIN6 cells by upregulating microtubule-associated protein 1 light chain 3-II (LC3II) and Beclin 1 but downregulating p62. Mechanistically, NiSO4 leads to abnormal activation of autophagy by inhibiting the PI3K/AKT/mTOR signaling pathway. Moreover, BK decreases FBG and increases insulin secretion in mice exposed to NiSO4. Light microscopy and transmission electron microscopy (TEM) analyses revealed that BK pretreatment partially restores MIN6 cell viability and decreases the number of autophagic bodies. BK significantly upregulates the protein levels of LC3II and Beclin1 but downregulates p62 in NiSO4-induced MIN6 cells. In addition, BK increases the levels of phosphorylated phosphatidylinositol 3-kinase (P-PI3K), phosphorylated protein kinase B (P-AKT) and mammalian target of rapamycin (mTOR). Most of these effects of BK are reversed by treatment with the HOE140 B2R inhibitor. The present results suggested that BK ameliorates NiSO4-induced pancreatic β-cell dysfunction through B2R-mediated activation of the PI3K/AKT/mTOR signaling pathway and inhibition of autophagy.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics