纳米配方植物化学物质在皮肤抗衰老研究中的应用:最新综述。

IF 2.6 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
3 Biotech Pub Date : 2025-01-01 Epub Date: 2025-01-03 DOI:10.1007/s13205-024-04197-y
Andrea G Uriostegui-Pena, Andrea Torres-Copado, Adriana Ochoa-Sanchez, Gabriel Luna-Bárcenas, Padmavati Sahare, Sujay Paul
{"title":"纳米配方植物化学物质在皮肤抗衰老研究中的应用:最新综述。","authors":"Andrea G Uriostegui-Pena, Andrea Torres-Copado, Adriana Ochoa-Sanchez, Gabriel Luna-Bárcenas, Padmavati Sahare, Sujay Paul","doi":"10.1007/s13205-024-04197-y","DOIUrl":null,"url":null,"abstract":"<p><p>Skin aging is characterized by progressive loss of functionality and regenerative potential of the skin, resulting in the appearance of wrinkles, irregular pigmentation, a decrease of elasticity, dryness, and rough texture. Damage to the skin caused by oxidative stress could substantially be slowed down by the use of phytochemicals that function as natural antioxidants. Although phytochemicals have immense potential as anti-aging medicines, their effectiveness as therapeutic agents is restricted by their poor solubility, biodistribution, stability, and hydrophilicity. Given their improved stability, solubility, efficacy, and occlusive properties, nanoformulations have emerged as promising drug delivery platforms for phytochemicals to achieve anti-aging effects. The efficacy of these nanoformulated phytochemicals in suppressing enzymes that accelerate skin aging, such as collagenase, tyrosinase and hyaluronidase, as well as enhancing superoxide dismutase, catalase, and collagen levels to improve skin appearance during aging has been demonstrated.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 1","pages":"31"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699038/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nanoformulated phytochemicals in skin anti-aging research: an updated mini review.\",\"authors\":\"Andrea G Uriostegui-Pena, Andrea Torres-Copado, Adriana Ochoa-Sanchez, Gabriel Luna-Bárcenas, Padmavati Sahare, Sujay Paul\",\"doi\":\"10.1007/s13205-024-04197-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Skin aging is characterized by progressive loss of functionality and regenerative potential of the skin, resulting in the appearance of wrinkles, irregular pigmentation, a decrease of elasticity, dryness, and rough texture. Damage to the skin caused by oxidative stress could substantially be slowed down by the use of phytochemicals that function as natural antioxidants. Although phytochemicals have immense potential as anti-aging medicines, their effectiveness as therapeutic agents is restricted by their poor solubility, biodistribution, stability, and hydrophilicity. Given their improved stability, solubility, efficacy, and occlusive properties, nanoformulations have emerged as promising drug delivery platforms for phytochemicals to achieve anti-aging effects. The efficacy of these nanoformulated phytochemicals in suppressing enzymes that accelerate skin aging, such as collagenase, tyrosinase and hyaluronidase, as well as enhancing superoxide dismutase, catalase, and collagen levels to improve skin appearance during aging has been demonstrated.</p>\",\"PeriodicalId\":7067,\"journal\":{\"name\":\"3 Biotech\",\"volume\":\"15 1\",\"pages\":\"31\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699038/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3 Biotech\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13205-024-04197-y\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-024-04197-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

皮肤老化的特征是皮肤功能和再生潜力的逐渐丧失,导致皱纹出现,色素沉着不规则,弹性下降,干燥和质地粗糙。由氧化应激引起的皮肤损伤可以通过使用具有天然抗氧化剂功能的植物化学物质而大大减缓。虽然植物化学物质作为抗衰老药物具有巨大的潜力,但由于其溶解性、生物分布、稳定性和亲水性差,其治疗效果受到限制。由于纳米制剂具有更好的稳定性、溶解度、有效性和闭塞性,因此纳米制剂已成为植物化学物质抗衰老的有前途的药物传递平台。这些纳米配方的植物化学物质在抑制加速皮肤衰老的酶(如胶原酶、酪氨酸酶和透明质酸酶)以及提高超氧化物歧化酶、过氧化氢酶和胶原蛋白水平以改善衰老过程中的皮肤外观方面的功效已得到证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanoformulated phytochemicals in skin anti-aging research: an updated mini review.

Skin aging is characterized by progressive loss of functionality and regenerative potential of the skin, resulting in the appearance of wrinkles, irregular pigmentation, a decrease of elasticity, dryness, and rough texture. Damage to the skin caused by oxidative stress could substantially be slowed down by the use of phytochemicals that function as natural antioxidants. Although phytochemicals have immense potential as anti-aging medicines, their effectiveness as therapeutic agents is restricted by their poor solubility, biodistribution, stability, and hydrophilicity. Given their improved stability, solubility, efficacy, and occlusive properties, nanoformulations have emerged as promising drug delivery platforms for phytochemicals to achieve anti-aging effects. The efficacy of these nanoformulated phytochemicals in suppressing enzymes that accelerate skin aging, such as collagenase, tyrosinase and hyaluronidase, as well as enhancing superoxide dismutase, catalase, and collagen levels to improve skin appearance during aging has been demonstrated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
3 Biotech
3 Biotech Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍: 3 Biotech publishes the results of the latest research related to the study and application of biotechnology to: - Medicine and Biomedical Sciences - Agriculture - The Environment The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信