Cancer cell adhesion property on all-chitin composite films with reduced crystallinity
We previously prepared self-reinforced chitin composite (SR-ChC) films, also called all-chitin composites, comprising two components, that is, scale-down chitin nanofibers (SD-ChNFs) with high crystallinity and scale-down low-crystalline chitin (SD-LC-Ch) matrixes. In this study, we precisely evaluated hydrophilicity under water enviromental conditions and its effect on cell adhesion using human-derived cancer cells on the SR-ChC film surfaces. The surface analysis of the SR-ChC films with reduced crystallinity revealed reorientation of the molecular chain assemblies with amino groups in the SD-LC-Ch components in water. Consequently, the amount of the SD-LC-Ch components gave rise to increasing the number of hydrophilic amino groups on the film surfaces, which resulted in efficiency of cell adhesion and elongation. This study concludes that the hydrophilic SD-LC-Ch components in the lower crystalline SR-ChC films strongly contribute to exhibiting new functions, related to interaction with biological substrates, such as cells.
期刊介绍:
Carbohydrate Research publishes reports of original research in the following areas of carbohydrate science: action of enzymes, analytical chemistry, biochemistry (biosynthesis, degradation, structural and functional biochemistry, conformation, molecular recognition, enzyme mechanisms, carbohydrate-processing enzymes, including glycosidases and glycosyltransferases), chemical synthesis, isolation of natural products, physicochemical studies, reactions and their mechanisms, the study of structures and stereochemistry, and technological aspects.
Papers on polysaccharides should have a "molecular" component; that is a paper on new or modified polysaccharides should include structural information and characterization in addition to the usual studies of rheological properties and the like. A paper on a new, naturally occurring polysaccharide should include structural information, defining monosaccharide components and linkage sequence.
Papers devoted wholly or partly to X-ray crystallographic studies, or to computational aspects (molecular mechanics or molecular orbital calculations, simulations via molecular dynamics), will be considered if they meet certain criteria. For computational papers the requirements are that the methods used be specified in sufficient detail to permit replication of the results, and that the conclusions be shown to have relevance to experimental observations - the authors'' own data or data from the literature. Specific directions for the presentation of X-ray data are given below under Results and "discussion".