Hyo Geun Lee, Yong Woo Kwon, Woon Ho Jung, Hyeonjun Lee, Min Seok Kim, Hyun-Mi Kim, Hyeongkeun Kim, Hae Jin Kim, Doh C Lee, Jaehoon Lim, Seong-Yong Cho
{"title":"量子点发光二极管用原子层沉积的超循环al掺杂ZnMgO合金。","authors":"Hyo Geun Lee, Yong Woo Kwon, Woon Ho Jung, Hyeonjun Lee, Min Seok Kim, Hyun-Mi Kim, Hyeongkeun Kim, Hae Jin Kim, Doh C Lee, Jaehoon Lim, Seong-Yong Cho","doi":"10.1021/acsami.4c17722","DOIUrl":null,"url":null,"abstract":"<p><p>Colloidal quantum-dot light-emitting diodes (QD-LEDs) have been significantly improved in terms of device performance and lifetime by employing zinc oxide (ZnO) as an electron transport layer (ETL). Although atomic layer deposition (ALD) allows fabrication of uniform, high-quality ZnO films with minimal defects, the high conductivity of ZnO has hindered its straightforward application as an ETL in QD-LEDs. Herein, we propose fabrication of Al-doped ZnMgO (Al:ZnMgO) ETLs for QD-LEDs through a supercycle ALD, with alternating depositions of various metal oxides. The supercycle ALD allows for extensive control of compositions, which is not possible in typical hydrolysis-based approaches. ZnMgO alloys produced by ALD adjust the band gap to match the QDs and suppress the electron injection. However, Mg compositions of >10% lead to a reduction in electron conductivity, limiting the charge balance in the QDs. The Al doping provides Al<sup>3+</sup> ions, oxygen vacancies, and zinc interstitials to compensate for the reduced conductivity of ZnMgO. Composition tuning based on the supercycle ALD enables to realize the ETLs offering optimal electron injection capability without compromising the electrical conductivity. QD-LEDs with the Al:ZnMgO ETLs exhibit a peak external quantum efficiency of 15.7% and peak luminance of 167,000 cd m<sup>-2</sup>, on par with typical devices using ZnMgO nanocrystal-based ETLs.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"3597-3607"},"PeriodicalIF":8.2000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supercycle Al-Doped ZnMgO Alloys via Atomic Layer Deposition for Quantum Dot Light-Emitting Diodes.\",\"authors\":\"Hyo Geun Lee, Yong Woo Kwon, Woon Ho Jung, Hyeonjun Lee, Min Seok Kim, Hyun-Mi Kim, Hyeongkeun Kim, Hae Jin Kim, Doh C Lee, Jaehoon Lim, Seong-Yong Cho\",\"doi\":\"10.1021/acsami.4c17722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Colloidal quantum-dot light-emitting diodes (QD-LEDs) have been significantly improved in terms of device performance and lifetime by employing zinc oxide (ZnO) as an electron transport layer (ETL). Although atomic layer deposition (ALD) allows fabrication of uniform, high-quality ZnO films with minimal defects, the high conductivity of ZnO has hindered its straightforward application as an ETL in QD-LEDs. Herein, we propose fabrication of Al-doped ZnMgO (Al:ZnMgO) ETLs for QD-LEDs through a supercycle ALD, with alternating depositions of various metal oxides. The supercycle ALD allows for extensive control of compositions, which is not possible in typical hydrolysis-based approaches. ZnMgO alloys produced by ALD adjust the band gap to match the QDs and suppress the electron injection. However, Mg compositions of >10% lead to a reduction in electron conductivity, limiting the charge balance in the QDs. The Al doping provides Al<sup>3+</sup> ions, oxygen vacancies, and zinc interstitials to compensate for the reduced conductivity of ZnMgO. Composition tuning based on the supercycle ALD enables to realize the ETLs offering optimal electron injection capability without compromising the electrical conductivity. QD-LEDs with the Al:ZnMgO ETLs exhibit a peak external quantum efficiency of 15.7% and peak luminance of 167,000 cd m<sup>-2</sup>, on par with typical devices using ZnMgO nanocrystal-based ETLs.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\" \",\"pages\":\"3597-3607\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c17722\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c17722","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Supercycle Al-Doped ZnMgO Alloys via Atomic Layer Deposition for Quantum Dot Light-Emitting Diodes.
Colloidal quantum-dot light-emitting diodes (QD-LEDs) have been significantly improved in terms of device performance and lifetime by employing zinc oxide (ZnO) as an electron transport layer (ETL). Although atomic layer deposition (ALD) allows fabrication of uniform, high-quality ZnO films with minimal defects, the high conductivity of ZnO has hindered its straightforward application as an ETL in QD-LEDs. Herein, we propose fabrication of Al-doped ZnMgO (Al:ZnMgO) ETLs for QD-LEDs through a supercycle ALD, with alternating depositions of various metal oxides. The supercycle ALD allows for extensive control of compositions, which is not possible in typical hydrolysis-based approaches. ZnMgO alloys produced by ALD adjust the band gap to match the QDs and suppress the electron injection. However, Mg compositions of >10% lead to a reduction in electron conductivity, limiting the charge balance in the QDs. The Al doping provides Al3+ ions, oxygen vacancies, and zinc interstitials to compensate for the reduced conductivity of ZnMgO. Composition tuning based on the supercycle ALD enables to realize the ETLs offering optimal electron injection capability without compromising the electrical conductivity. QD-LEDs with the Al:ZnMgO ETLs exhibit a peak external quantum efficiency of 15.7% and peak luminance of 167,000 cd m-2, on par with typical devices using ZnMgO nanocrystal-based ETLs.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.