量子点发光二极管用原子层沉积的超循环al掺杂ZnMgO合金。

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
ACS Applied Materials & Interfaces Pub Date : 2025-01-15 Epub Date: 2025-01-06 DOI:10.1021/acsami.4c17722
Hyo Geun Lee, Yong Woo Kwon, Woon Ho Jung, Hyeonjun Lee, Min Seok Kim, Hyun-Mi Kim, Hyeongkeun Kim, Hae Jin Kim, Doh C Lee, Jaehoon Lim, Seong-Yong Cho
{"title":"量子点发光二极管用原子层沉积的超循环al掺杂ZnMgO合金。","authors":"Hyo Geun Lee, Yong Woo Kwon, Woon Ho Jung, Hyeonjun Lee, Min Seok Kim, Hyun-Mi Kim, Hyeongkeun Kim, Hae Jin Kim, Doh C Lee, Jaehoon Lim, Seong-Yong Cho","doi":"10.1021/acsami.4c17722","DOIUrl":null,"url":null,"abstract":"<p><p>Colloidal quantum-dot light-emitting diodes (QD-LEDs) have been significantly improved in terms of device performance and lifetime by employing zinc oxide (ZnO) as an electron transport layer (ETL). Although atomic layer deposition (ALD) allows fabrication of uniform, high-quality ZnO films with minimal defects, the high conductivity of ZnO has hindered its straightforward application as an ETL in QD-LEDs. Herein, we propose fabrication of Al-doped ZnMgO (Al:ZnMgO) ETLs for QD-LEDs through a supercycle ALD, with alternating depositions of various metal oxides. The supercycle ALD allows for extensive control of compositions, which is not possible in typical hydrolysis-based approaches. ZnMgO alloys produced by ALD adjust the band gap to match the QDs and suppress the electron injection. However, Mg compositions of >10% lead to a reduction in electron conductivity, limiting the charge balance in the QDs. The Al doping provides Al<sup>3+</sup> ions, oxygen vacancies, and zinc interstitials to compensate for the reduced conductivity of ZnMgO. Composition tuning based on the supercycle ALD enables to realize the ETLs offering optimal electron injection capability without compromising the electrical conductivity. QD-LEDs with the Al:ZnMgO ETLs exhibit a peak external quantum efficiency of 15.7% and peak luminance of 167,000 cd m<sup>-2</sup>, on par with typical devices using ZnMgO nanocrystal-based ETLs.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"3597-3607"},"PeriodicalIF":8.2000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supercycle Al-Doped ZnMgO Alloys via Atomic Layer Deposition for Quantum Dot Light-Emitting Diodes.\",\"authors\":\"Hyo Geun Lee, Yong Woo Kwon, Woon Ho Jung, Hyeonjun Lee, Min Seok Kim, Hyun-Mi Kim, Hyeongkeun Kim, Hae Jin Kim, Doh C Lee, Jaehoon Lim, Seong-Yong Cho\",\"doi\":\"10.1021/acsami.4c17722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Colloidal quantum-dot light-emitting diodes (QD-LEDs) have been significantly improved in terms of device performance and lifetime by employing zinc oxide (ZnO) as an electron transport layer (ETL). Although atomic layer deposition (ALD) allows fabrication of uniform, high-quality ZnO films with minimal defects, the high conductivity of ZnO has hindered its straightforward application as an ETL in QD-LEDs. Herein, we propose fabrication of Al-doped ZnMgO (Al:ZnMgO) ETLs for QD-LEDs through a supercycle ALD, with alternating depositions of various metal oxides. The supercycle ALD allows for extensive control of compositions, which is not possible in typical hydrolysis-based approaches. ZnMgO alloys produced by ALD adjust the band gap to match the QDs and suppress the electron injection. However, Mg compositions of >10% lead to a reduction in electron conductivity, limiting the charge balance in the QDs. The Al doping provides Al<sup>3+</sup> ions, oxygen vacancies, and zinc interstitials to compensate for the reduced conductivity of ZnMgO. Composition tuning based on the supercycle ALD enables to realize the ETLs offering optimal electron injection capability without compromising the electrical conductivity. QD-LEDs with the Al:ZnMgO ETLs exhibit a peak external quantum efficiency of 15.7% and peak luminance of 167,000 cd m<sup>-2</sup>, on par with typical devices using ZnMgO nanocrystal-based ETLs.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\" \",\"pages\":\"3597-3607\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c17722\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c17722","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过采用氧化锌(ZnO)作为电子传输层(ETL),胶体量子点发光二极管(QD-LED)的器件性能和寿命得到了显著提高。虽然原子层沉积(ALD)技术可以制备出均匀、高质量且缺陷极少的氧化锌薄膜,但氧化锌的高电导率阻碍了其在 QD-LED 中作为 ETL 的直接应用。在此,我们建议通过超循环 ALD,交替沉积各种金属氧化物,为 QD-LED 制备铝掺杂 ZnMgO(Al:ZnMgO)ETL。超循环 ALD 可以实现对成分的广泛控制,这是典型的基于水解的方法所无法实现的。通过 ALD 生成的 ZnMgO 合金可以调整带隙,使其与 QD 匹配,并抑制电子注入。然而,镁含量大于 10% 会导致电子传导性降低,从而限制了 QD 的电荷平衡。铝掺杂提供了 Al3+ 离子、氧空位和锌间隙,以弥补 ZnMgO 降低的导电性。在超循环 ALD 的基础上进行成分调整,可以实现 ETL,从而在不影响导电性的情况下提供最佳的电子注入能力。使用 Al:ZnMgO ETL 的 QD-LED 的峰值外部量子效率为 15.7%,峰值亮度为 167,000 cd m-2,与使用 ZnMgO 纳米晶体 ETL 的典型器件相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Supercycle Al-Doped ZnMgO Alloys via Atomic Layer Deposition for Quantum Dot Light-Emitting Diodes.

Supercycle Al-Doped ZnMgO Alloys via Atomic Layer Deposition for Quantum Dot Light-Emitting Diodes.

Colloidal quantum-dot light-emitting diodes (QD-LEDs) have been significantly improved in terms of device performance and lifetime by employing zinc oxide (ZnO) as an electron transport layer (ETL). Although atomic layer deposition (ALD) allows fabrication of uniform, high-quality ZnO films with minimal defects, the high conductivity of ZnO has hindered its straightforward application as an ETL in QD-LEDs. Herein, we propose fabrication of Al-doped ZnMgO (Al:ZnMgO) ETLs for QD-LEDs through a supercycle ALD, with alternating depositions of various metal oxides. The supercycle ALD allows for extensive control of compositions, which is not possible in typical hydrolysis-based approaches. ZnMgO alloys produced by ALD adjust the band gap to match the QDs and suppress the electron injection. However, Mg compositions of >10% lead to a reduction in electron conductivity, limiting the charge balance in the QDs. The Al doping provides Al3+ ions, oxygen vacancies, and zinc interstitials to compensate for the reduced conductivity of ZnMgO. Composition tuning based on the supercycle ALD enables to realize the ETLs offering optimal electron injection capability without compromising the electrical conductivity. QD-LEDs with the Al:ZnMgO ETLs exhibit a peak external quantum efficiency of 15.7% and peak luminance of 167,000 cd m-2, on par with typical devices using ZnMgO nanocrystal-based ETLs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信