锡单原子催化剂对CO2电还原的不对称配位工程:电荷容量在选择性中的关键作用

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-01-06 DOI:10.1002/smll.202409658
Juan Zhang, Yu Wang, Yafei Li
{"title":"锡单原子催化剂对CO2电还原的不对称配位工程:电荷容量在选择性中的关键作用","authors":"Juan Zhang,&nbsp;Yu Wang,&nbsp;Yafei Li","doi":"10.1002/smll.202409658","DOIUrl":null,"url":null,"abstract":"<p>Electrochemical reduction of CO<sub>2</sub> is an efficient strategy for CO<sub>2</sub> utilization under mild conditions. Tin (Sn) single-atom catalysts (SACs) are promising candidates due to their controllable CO/formate generation via asymmetric coordination engineering. Nevertheless, the factors that govern the selectivity remain unclear. Herein, using constant-potential first-principles calculations, the crucial role of charge capacity in affecting the catalytic selectivity is revealed. The conventional SnN<sub>4</sub> moiety of Sn SACs exhibits a physisorbed CO<sub>2</sub> configuration at operating potentials, thereby facilitating the generation of their energetically favorable intermediate, <sup>*</sup>OCHO. Remarkably, oxygen doping on the SnN<sub>4</sub> moiety breaks the uniform charge distribution and improves the charge capacity of <sup>*</sup>CO<sub>2</sub>. This promotes CO<sub>2</sub> adsorption with a V-shaped chemisorption configuration, which is conducive to the formation of the kinetically dominant <sup>*</sup>COOH intermediate due to their similar configurations. Therefore, asymmetric coordination engineering not only enhances the reactivity of Sn SACs but also shifts the selectivity from formate to CO. The study provides a mechanistic understanding of CO<sub>2</sub> reduction selectivity and offers practical guidance for the rational design of SACs.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 8","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymmetric Coordination Engineering of Tin Single-Atom Catalysts Toward CO2 Electroreduction: the Crucial Role of Charge Capacity in Selectivity\",\"authors\":\"Juan Zhang,&nbsp;Yu Wang,&nbsp;Yafei Li\",\"doi\":\"10.1002/smll.202409658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrochemical reduction of CO<sub>2</sub> is an efficient strategy for CO<sub>2</sub> utilization under mild conditions. Tin (Sn) single-atom catalysts (SACs) are promising candidates due to their controllable CO/formate generation via asymmetric coordination engineering. Nevertheless, the factors that govern the selectivity remain unclear. Herein, using constant-potential first-principles calculations, the crucial role of charge capacity in affecting the catalytic selectivity is revealed. The conventional SnN<sub>4</sub> moiety of Sn SACs exhibits a physisorbed CO<sub>2</sub> configuration at operating potentials, thereby facilitating the generation of their energetically favorable intermediate, <sup>*</sup>OCHO. Remarkably, oxygen doping on the SnN<sub>4</sub> moiety breaks the uniform charge distribution and improves the charge capacity of <sup>*</sup>CO<sub>2</sub>. This promotes CO<sub>2</sub> adsorption with a V-shaped chemisorption configuration, which is conducive to the formation of the kinetically dominant <sup>*</sup>COOH intermediate due to their similar configurations. Therefore, asymmetric coordination engineering not only enhances the reactivity of Sn SACs but also shifts the selectivity from formate to CO. The study provides a mechanistic understanding of CO<sub>2</sub> reduction selectivity and offers practical guidance for the rational design of SACs.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 8\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202409658\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202409658","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二氧化碳的电化学还原是一种在温和条件下利用二氧化碳的有效策略。锡(Sn)单原子催化剂(SAC)通过不对称配位工程可控地生成 CO/甲酸盐,因此是很有前景的候选催化剂。然而,制约其选择性的因素仍不清楚。本文利用恒电位第一性原理计算揭示了电荷容量在影响催化选择性方面的关键作用。在工作电位下,Sn SAC 的传统 SnN4 分子呈现出物理吸附的 CO2 构型,从而促进了对其能量有利的中间产物 *OCHO 的生成。值得注意的是,SnN4分子上的氧掺杂打破了均匀的电荷分布,提高了*CO2的电荷容量。这促进了具有 V 型化学吸附构型的 CO2 吸附,由于它们的构型相似,这有利于形成动力学上占优势的 *COOH 中间体。因此,不对称配位工程不仅提高了 Sn SAC 的反应活性,而且还将选择性从甲酸酯转移到了 CO。这项研究从机理上理解了二氧化碳还原选择性,为合理设计 SAC 提供了实际指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Asymmetric Coordination Engineering of Tin Single-Atom Catalysts Toward CO2 Electroreduction: the Crucial Role of Charge Capacity in Selectivity

Asymmetric Coordination Engineering of Tin Single-Atom Catalysts Toward CO2 Electroreduction: the Crucial Role of Charge Capacity in Selectivity

Electrochemical reduction of CO2 is an efficient strategy for CO2 utilization under mild conditions. Tin (Sn) single-atom catalysts (SACs) are promising candidates due to their controllable CO/formate generation via asymmetric coordination engineering. Nevertheless, the factors that govern the selectivity remain unclear. Herein, using constant-potential first-principles calculations, the crucial role of charge capacity in affecting the catalytic selectivity is revealed. The conventional SnN4 moiety of Sn SACs exhibits a physisorbed CO2 configuration at operating potentials, thereby facilitating the generation of their energetically favorable intermediate, *OCHO. Remarkably, oxygen doping on the SnN4 moiety breaks the uniform charge distribution and improves the charge capacity of *CO2. This promotes CO2 adsorption with a V-shaped chemisorption configuration, which is conducive to the formation of the kinetically dominant *COOH intermediate due to their similar configurations. Therefore, asymmetric coordination engineering not only enhances the reactivity of Sn SACs but also shifts the selectivity from formate to CO. The study provides a mechanistic understanding of CO2 reduction selectivity and offers practical guidance for the rational design of SACs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信