San Nam, Donghyun Kang, Seong-Pil Jeon, Dayul Nam, Jeong-Wan Jo, Sang-Joon Park, Jiyong Lee, Myung-Gil Kim, Tae-Jun Ha, Sung Kyu Park, Yong-Hoon Kim
{"title":"接触工程氧化膜晶体管用于基于稳态的高线性度和高精度神经形态计算","authors":"San Nam, Donghyun Kang, Seong-Pil Jeon, Dayul Nam, Jeong-Wan Jo, Sang-Joon Park, Jiyong Lee, Myung-Gil Kim, Tae-Jun Ha, Sung Kyu Park, Yong-Hoon Kim","doi":"10.1002/smll.202409510","DOIUrl":null,"url":null,"abstract":"<p>Homeostasis is essential in biological neural networks, optimizing information processing and experience-dependent learning by maintaining the balance of neuronal activity. However, conventional two-terminal memristors have limitations in implementing homeostatic functions due to the absence of global regulation ability. Here, three-terminal oxide memtransistor-based homeostatic synapses are demonstrated to perform highly linear synaptic weight update and enhanced accuracy in neuromorphic computing. Particularly, by leveraging the gate control of contact-engineered indium-gallium-zinc-oxide (IGZO) memtransistor, synaptic weight scaling is enabled for high-linearity and precision neuromorphic computing. Moreover, sinusoidal control of gate voltage is demonstrated, possibly enabling the emulation of higher-order synaptic functions. The device structure of IGZO memtransistor is optimized regarding the source/drain electrode materials and an interfacial layer inserted between the IGZO channel and source electrode. As a result, memtransistors exhibiting high current switching ratio of >10<sup>4</sup> and reliable endurance characteristics are obtained. Furthermore, through the adaptation of synaptic scaling, emulating the homeostasis, non-linearity values of 0.01 and −0.01 are achieved for potentiation and depression, respectively, exhibiting a recognition accuracy of 91.77% for digit images. It is envisioned that the contact-engineered IGZO memtransistors hold significant promise for implementing the homeostasis in neuromorphic computing for high linearity and high efficiency.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 7","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contact-Engineered Oxide Memtransistors for Homeostasis-Based High-Linearity and Precision Neuromorphic Computing\",\"authors\":\"San Nam, Donghyun Kang, Seong-Pil Jeon, Dayul Nam, Jeong-Wan Jo, Sang-Joon Park, Jiyong Lee, Myung-Gil Kim, Tae-Jun Ha, Sung Kyu Park, Yong-Hoon Kim\",\"doi\":\"10.1002/smll.202409510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Homeostasis is essential in biological neural networks, optimizing information processing and experience-dependent learning by maintaining the balance of neuronal activity. However, conventional two-terminal memristors have limitations in implementing homeostatic functions due to the absence of global regulation ability. Here, three-terminal oxide memtransistor-based homeostatic synapses are demonstrated to perform highly linear synaptic weight update and enhanced accuracy in neuromorphic computing. Particularly, by leveraging the gate control of contact-engineered indium-gallium-zinc-oxide (IGZO) memtransistor, synaptic weight scaling is enabled for high-linearity and precision neuromorphic computing. Moreover, sinusoidal control of gate voltage is demonstrated, possibly enabling the emulation of higher-order synaptic functions. The device structure of IGZO memtransistor is optimized regarding the source/drain electrode materials and an interfacial layer inserted between the IGZO channel and source electrode. As a result, memtransistors exhibiting high current switching ratio of >10<sup>4</sup> and reliable endurance characteristics are obtained. Furthermore, through the adaptation of synaptic scaling, emulating the homeostasis, non-linearity values of 0.01 and −0.01 are achieved for potentiation and depression, respectively, exhibiting a recognition accuracy of 91.77% for digit images. It is envisioned that the contact-engineered IGZO memtransistors hold significant promise for implementing the homeostasis in neuromorphic computing for high linearity and high efficiency.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 7\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202409510\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202409510","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Contact-Engineered Oxide Memtransistors for Homeostasis-Based High-Linearity and Precision Neuromorphic Computing
Homeostasis is essential in biological neural networks, optimizing information processing and experience-dependent learning by maintaining the balance of neuronal activity. However, conventional two-terminal memristors have limitations in implementing homeostatic functions due to the absence of global regulation ability. Here, three-terminal oxide memtransistor-based homeostatic synapses are demonstrated to perform highly linear synaptic weight update and enhanced accuracy in neuromorphic computing. Particularly, by leveraging the gate control of contact-engineered indium-gallium-zinc-oxide (IGZO) memtransistor, synaptic weight scaling is enabled for high-linearity and precision neuromorphic computing. Moreover, sinusoidal control of gate voltage is demonstrated, possibly enabling the emulation of higher-order synaptic functions. The device structure of IGZO memtransistor is optimized regarding the source/drain electrode materials and an interfacial layer inserted between the IGZO channel and source electrode. As a result, memtransistors exhibiting high current switching ratio of >104 and reliable endurance characteristics are obtained. Furthermore, through the adaptation of synaptic scaling, emulating the homeostasis, non-linearity values of 0.01 and −0.01 are achieved for potentiation and depression, respectively, exhibiting a recognition accuracy of 91.77% for digit images. It is envisioned that the contact-engineered IGZO memtransistors hold significant promise for implementing the homeostasis in neuromorphic computing for high linearity and high efficiency.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.