Rhian S. Holvey, Daniel A. Erlanson, Iwan J. P. de Esch, Barbara Farkaš, Wolfgang Jahnke, Tsuyoshi Nishiyama, Andrew J. Woodhead
{"title":"Fragment-to-Lead Medicinal Chemistry Publications in 2023","authors":"Rhian S. Holvey, Daniel A. Erlanson, Iwan J. P. de Esch, Barbara Farkaš, Wolfgang Jahnke, Tsuyoshi Nishiyama, Andrew J. Woodhead","doi":"10.1021/acs.jmedchem.4c02593","DOIUrl":null,"url":null,"abstract":"This Perspective summarizes successful fragment-to-lead (F2L) studies that were published in 2023 and is the ninth installment in an annual series. A tabulated summary of the relevant articles published in 2023 is provided (17 entries from 16 articles), and a comparison of the target classes, screening methods, and overall fragment or lead property trends for 2023 examples and for the combined entries over the years 2015–2023 is discussed. In addition, we identify several trends and innovations in the 2023 literature that promise to further increase the success of fragment-based drug discovery (FBDD), particularly in the areas of NMR and virtual screening, fragment library design, and fragment linking.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"21 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c02593","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Fragment-to-Lead Medicinal Chemistry Publications in 2023
This Perspective summarizes successful fragment-to-lead (F2L) studies that were published in 2023 and is the ninth installment in an annual series. A tabulated summary of the relevant articles published in 2023 is provided (17 entries from 16 articles), and a comparison of the target classes, screening methods, and overall fragment or lead property trends for 2023 examples and for the combined entries over the years 2015–2023 is discussed. In addition, we identify several trends and innovations in the 2023 literature that promise to further increase the success of fragment-based drug discovery (FBDD), particularly in the areas of NMR and virtual screening, fragment library design, and fragment linking.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.