{"title":"基于铁电偏振调制的二维Ruddlesden-Popper钙钛矿/PVDF-TrFE光电探测器","authors":"Xinglong Zhang, Enliu Hong, Xiaojun Tan, Jie Liu, Anquan Jiang, Xiaosheng Fang","doi":"10.1002/adfm.202424848","DOIUrl":null,"url":null,"abstract":"2D Ruddlesden-Popper (RP) perovskites have garnered increasing attention for their excellent photoresponse, characterized by high carrier mobility, tunable bandgaps, high optical absorption, and molecular asymmetry. Herein, centimeter scale single crystal 2D hybrid perovskites, BA<sub>2</sub>PbBr<sub>4</sub> (BPB) is synthesized, using quasi-static cooling method and composited with ferroelectric PVDF-TrFE(PT) film to construct a multi-field coupling photodetector (PD) via van der Waals force contact. Ferroelectric tests show that the PT film exhibits a saturated polarization strength of 3.6 µC cm<sup>−2</sup>, allowing the ferroelectric localized field to modulate the band structure of PT and enhance the photocurrent. The Heterojunction systems exhibit ultra-high responsivity (15.3 A W<sup>−1</sup>) and detectivity (1.99 × 10<sup>13</sup> Jones) under 390 nm illumination at 3 V bias, with a performance improvement of over 10<sup>2</sup> times compared to BPB PDs. Furthermore, the hybrid PDs exhibit highly stable <i>I–t</i> curve with a photocurrent retention rate of 97.4%. Leveraging this feature, a large-area imaging device is designed at the centimeter level scale, enabling multifunctional vision applications accurate letter imaging process and anti-interference number detection. The work presents a valuable insight in design of future autonomous driving vision systems.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"125 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2D Ruddlesden-Popper Perovskites/PVDF-TrFE Photodetector for Anti-Interference Vision System Derived from Ferroelectric Polarization Modulation\",\"authors\":\"Xinglong Zhang, Enliu Hong, Xiaojun Tan, Jie Liu, Anquan Jiang, Xiaosheng Fang\",\"doi\":\"10.1002/adfm.202424848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"2D Ruddlesden-Popper (RP) perovskites have garnered increasing attention for their excellent photoresponse, characterized by high carrier mobility, tunable bandgaps, high optical absorption, and molecular asymmetry. Herein, centimeter scale single crystal 2D hybrid perovskites, BA<sub>2</sub>PbBr<sub>4</sub> (BPB) is synthesized, using quasi-static cooling method and composited with ferroelectric PVDF-TrFE(PT) film to construct a multi-field coupling photodetector (PD) via van der Waals force contact. Ferroelectric tests show that the PT film exhibits a saturated polarization strength of 3.6 µC cm<sup>−2</sup>, allowing the ferroelectric localized field to modulate the band structure of PT and enhance the photocurrent. The Heterojunction systems exhibit ultra-high responsivity (15.3 A W<sup>−1</sup>) and detectivity (1.99 × 10<sup>13</sup> Jones) under 390 nm illumination at 3 V bias, with a performance improvement of over 10<sup>2</sup> times compared to BPB PDs. Furthermore, the hybrid PDs exhibit highly stable <i>I–t</i> curve with a photocurrent retention rate of 97.4%. Leveraging this feature, a large-area imaging device is designed at the centimeter level scale, enabling multifunctional vision applications accurate letter imaging process and anti-interference number detection. The work presents a valuable insight in design of future autonomous driving vision systems.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"125 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2025-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202424848\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202424848","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
2D Ruddlesden-Popper (RP)钙钛矿因其具有高载流子迁移率、可调带隙、高光吸收和分子不对称等优异的光响应特性而受到越来越多的关注。本文采用准静态冷却方法合成了厘米尺度的二维单晶杂化钙钛矿BA2PbBr4 (BPB),并与铁电PVDF-TrFE(PT)薄膜复合,通过范德华力接触构建了多场耦合光电探测器(PD)。铁电测试表明,PT薄膜的饱和极化强度为3.6µC cm−2,允许铁电局域场调制PT的能带结构并增强光电流。该异质结系统在3v偏置、390nm光照下具有超高的响应度(15.3 A W−1)和探测度(1.99 × 1013 Jones),性能比BPB二极管提高了102倍以上。此外,混合pd具有高度稳定的I-t曲线,光电流保持率为97.4%。利用这一特点,设计了厘米级的大面积成像器件,实现了多功能视觉应用,精确的字母成像处理和抗干扰数字检测。这项工作为未来自动驾驶视觉系统的设计提供了有价值的见解。
2D Ruddlesden-Popper Perovskites/PVDF-TrFE Photodetector for Anti-Interference Vision System Derived from Ferroelectric Polarization Modulation
2D Ruddlesden-Popper (RP) perovskites have garnered increasing attention for their excellent photoresponse, characterized by high carrier mobility, tunable bandgaps, high optical absorption, and molecular asymmetry. Herein, centimeter scale single crystal 2D hybrid perovskites, BA2PbBr4 (BPB) is synthesized, using quasi-static cooling method and composited with ferroelectric PVDF-TrFE(PT) film to construct a multi-field coupling photodetector (PD) via van der Waals force contact. Ferroelectric tests show that the PT film exhibits a saturated polarization strength of 3.6 µC cm−2, allowing the ferroelectric localized field to modulate the band structure of PT and enhance the photocurrent. The Heterojunction systems exhibit ultra-high responsivity (15.3 A W−1) and detectivity (1.99 × 1013 Jones) under 390 nm illumination at 3 V bias, with a performance improvement of over 102 times compared to BPB PDs. Furthermore, the hybrid PDs exhibit highly stable I–t curve with a photocurrent retention rate of 97.4%. Leveraging this feature, a large-area imaging device is designed at the centimeter level scale, enabling multifunctional vision applications accurate letter imaging process and anti-interference number detection. The work presents a valuable insight in design of future autonomous driving vision systems.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.