水溢出加速双电子氧还原

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qianyi Li, Zhihao Nie, Wenqiang Wu, Hongxin Guan, Baokai Xia, Qi Huang, Jingjing Duan, Sheng Chen
{"title":"水溢出加速双电子氧还原","authors":"Qianyi Li,&nbsp;Zhihao Nie,&nbsp;Wenqiang Wu,&nbsp;Hongxin Guan,&nbsp;Baokai Xia,&nbsp;Qi Huang,&nbsp;Jingjing Duan,&nbsp;Sheng Chen","doi":"10.1002/adma.202412039","DOIUrl":null,"url":null,"abstract":"<p>Limited by the activity-selectivity trade-off relationship, the electrochemical activation of small molecules (like O<sub>2</sub>, N<sub>2,</sub> and CO<sub>2</sub>) rapidly diminishes Faradaic efficiencies with elevated current densities (particularly at ampere levels). Nevertheless, some catalysts can circumvent this restriction in a two-electron oxygen reduction reaction (2e<sup>−</sup> ORR), a sustainable pathway for activating O<sub>2</sub> to hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). Here we report 2e<sup>−</sup> ORR expedited in a fluorine-bridged copper metal–organic framework catalyst, arising from the water spillover effect. Through <i>operando</i> spectroscopies, kinetic and theoretical characterizations, it demonstrates that under neutral conditions, water spillover plays a dual role in accelerating water dissociation and stabilizing the key <sup>*</sup>OOH intermediate. Benefiting from water spillover, the catalyst can expedite 2e<sup>−</sup> ORR in the current density range of 0.1–2.0 A cm<sup>−2</sup> with both high Faradaic efficiencies (99–84.9%) and H<sub>2</sub>O<sub>2</sub> yield rates (63.17–1082.26 mg h<sup>−1</sup> cm<sup>−2</sup>). Further, the feasibility of the present system has been demonstrated by scaling up to a unit module cell of 25 cm<sup>2</sup>, in combination with techno-economics simulations showing H<sub>2</sub>O<sub>2</sub> production cost strongly dependent on current densities, giving the lowest H<sub>2</sub>O<sub>2</sub> price of $0.50 kg<sup>−1</sup> at 2.0 A cm<sup>−2</sup>. This work is expected to provide an additional dimension to leverage systems independent oftraditional rules.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 8","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Water Spillover to Expedite Two-Electron Oxygen Reduction\",\"authors\":\"Qianyi Li,&nbsp;Zhihao Nie,&nbsp;Wenqiang Wu,&nbsp;Hongxin Guan,&nbsp;Baokai Xia,&nbsp;Qi Huang,&nbsp;Jingjing Duan,&nbsp;Sheng Chen\",\"doi\":\"10.1002/adma.202412039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Limited by the activity-selectivity trade-off relationship, the electrochemical activation of small molecules (like O<sub>2</sub>, N<sub>2,</sub> and CO<sub>2</sub>) rapidly diminishes Faradaic efficiencies with elevated current densities (particularly at ampere levels). Nevertheless, some catalysts can circumvent this restriction in a two-electron oxygen reduction reaction (2e<sup>−</sup> ORR), a sustainable pathway for activating O<sub>2</sub> to hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). Here we report 2e<sup>−</sup> ORR expedited in a fluorine-bridged copper metal–organic framework catalyst, arising from the water spillover effect. Through <i>operando</i> spectroscopies, kinetic and theoretical characterizations, it demonstrates that under neutral conditions, water spillover plays a dual role in accelerating water dissociation and stabilizing the key <sup>*</sup>OOH intermediate. Benefiting from water spillover, the catalyst can expedite 2e<sup>−</sup> ORR in the current density range of 0.1–2.0 A cm<sup>−2</sup> with both high Faradaic efficiencies (99–84.9%) and H<sub>2</sub>O<sub>2</sub> yield rates (63.17–1082.26 mg h<sup>−1</sup> cm<sup>−2</sup>). Further, the feasibility of the present system has been demonstrated by scaling up to a unit module cell of 25 cm<sup>2</sup>, in combination with techno-economics simulations showing H<sub>2</sub>O<sub>2</sub> production cost strongly dependent on current densities, giving the lowest H<sub>2</sub>O<sub>2</sub> price of $0.50 kg<sup>−1</sup> at 2.0 A cm<sup>−2</sup>. This work is expected to provide an additional dimension to leverage systems independent oftraditional rules.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 8\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202412039\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202412039","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

受活性-选择性权衡关系的限制,小分子(如O2, N2和CO2)的电化学激活随着电流密度的增加(特别是在安培水平下)迅速降低法拉第效率。然而,一些催化剂可以在双电子氧还原反应(2e - ORR)中绕过这一限制,这是一种将O2激活为过氧化氢(H2O2)的可持续途径。在这里,我们报道了氟桥接铜金属-有机框架催化剂中由于水溢出效应而加速的2e - ORR。通过operando光谱、动力学和理论表征,证明了在中性条件下,水溢出在加速水解离和稳定关键*OOH中间体方面具有双重作用。在0.1 ~ 2.0 A cm−2的电流密度范围内,该催化剂具有较高的法拉第效率(99 ~ 84.9%)和H2O2产率(63.17 ~ 1082.26 mg h−1 cm−2)。此外,通过扩大到25平方厘米的单元模块电池,结合技术经济模拟,证明了当前系统的可行性,表明H2O2的生产成本与电流密度密切相关,在2.0 a cm−2时,H2O2的最低价格为0.50 kg−1美元。这项工作有望提供一个额外的维度,以利用独立于传统规则的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Water Spillover to Expedite Two-Electron Oxygen Reduction

Water Spillover to Expedite Two-Electron Oxygen Reduction

Water Spillover to Expedite Two-Electron Oxygen Reduction

Water Spillover to Expedite Two-Electron Oxygen Reduction

Water Spillover to Expedite Two-Electron Oxygen Reduction

Water Spillover to Expedite Two-Electron Oxygen Reduction

Limited by the activity-selectivity trade-off relationship, the electrochemical activation of small molecules (like O2, N2, and CO2) rapidly diminishes Faradaic efficiencies with elevated current densities (particularly at ampere levels). Nevertheless, some catalysts can circumvent this restriction in a two-electron oxygen reduction reaction (2e ORR), a sustainable pathway for activating O2 to hydrogen peroxide (H2O2). Here we report 2e ORR expedited in a fluorine-bridged copper metal–organic framework catalyst, arising from the water spillover effect. Through operando spectroscopies, kinetic and theoretical characterizations, it demonstrates that under neutral conditions, water spillover plays a dual role in accelerating water dissociation and stabilizing the key *OOH intermediate. Benefiting from water spillover, the catalyst can expedite 2e ORR in the current density range of 0.1–2.0 A cm−2 with both high Faradaic efficiencies (99–84.9%) and H2O2 yield rates (63.17–1082.26 mg h−1 cm−2). Further, the feasibility of the present system has been demonstrated by scaling up to a unit module cell of 25 cm2, in combination with techno-economics simulations showing H2O2 production cost strongly dependent on current densities, giving the lowest H2O2 price of $0.50 kg−1 at 2.0 A cm−2. This work is expected to provide an additional dimension to leverage systems independent oftraditional rules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信