{"title":"由智能热调节气凝胶实现的被动等温柔性传感器","authors":"Shenjie Zhong, Bohan Lu, Duan-Chao Wang, Brian Arianpour, Shaolei Wang, Haiyu Han, Junyi Yin, Hong Bao, Yina Liu, Zhen Wen, Yunlei Zhou","doi":"10.1002/adma.202415386","DOIUrl":null,"url":null,"abstract":"<p>Environmentally induced sensor temperature fluctuations can distort the outputs of a sensor, reducing their stability during long-term health monitoring. Here, a passive isothermal flexible sensor is proposed by using hierarchical cellulose aerogel (HCA) as the top tribonegative layer, which allows the sensor to adapt dynamic thermal environments through both radiative cooling and heat insulation. The radiative cooling effect can cool down the temperatures of a sensor in summer, while the hollow microfibers in HCA provide ultralow thermal conductivity to reduce internal heat loss in winter. The prepared passive isothermal sensor is capable of maintaining the rated working temperature over an extensive temperature range of 0−100 °C, demonstrating for gripping hot and cold objects. While monitoring human movements under direct sunlight, the temperature of a conventional sensor rose by 12.3 °C, whereas the sensor experienced an increase of only 0.3 °C. Therefore, this work presents a promising strategy for adapting to environments, enabling wearable electronics to function effectively in dynamic thermal conditions.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 8","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Passive Isothermal Flexible Sensor Enabled by Smart Thermal-Regulating Aerogels\",\"authors\":\"Shenjie Zhong, Bohan Lu, Duan-Chao Wang, Brian Arianpour, Shaolei Wang, Haiyu Han, Junyi Yin, Hong Bao, Yina Liu, Zhen Wen, Yunlei Zhou\",\"doi\":\"10.1002/adma.202415386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Environmentally induced sensor temperature fluctuations can distort the outputs of a sensor, reducing their stability during long-term health monitoring. Here, a passive isothermal flexible sensor is proposed by using hierarchical cellulose aerogel (HCA) as the top tribonegative layer, which allows the sensor to adapt dynamic thermal environments through both radiative cooling and heat insulation. The radiative cooling effect can cool down the temperatures of a sensor in summer, while the hollow microfibers in HCA provide ultralow thermal conductivity to reduce internal heat loss in winter. The prepared passive isothermal sensor is capable of maintaining the rated working temperature over an extensive temperature range of 0−100 °C, demonstrating for gripping hot and cold objects. While monitoring human movements under direct sunlight, the temperature of a conventional sensor rose by 12.3 °C, whereas the sensor experienced an increase of only 0.3 °C. Therefore, this work presents a promising strategy for adapting to environments, enabling wearable electronics to function effectively in dynamic thermal conditions.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 8\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202415386\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202415386","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Passive Isothermal Flexible Sensor Enabled by Smart Thermal-Regulating Aerogels
Environmentally induced sensor temperature fluctuations can distort the outputs of a sensor, reducing their stability during long-term health monitoring. Here, a passive isothermal flexible sensor is proposed by using hierarchical cellulose aerogel (HCA) as the top tribonegative layer, which allows the sensor to adapt dynamic thermal environments through both radiative cooling and heat insulation. The radiative cooling effect can cool down the temperatures of a sensor in summer, while the hollow microfibers in HCA provide ultralow thermal conductivity to reduce internal heat loss in winter. The prepared passive isothermal sensor is capable of maintaining the rated working temperature over an extensive temperature range of 0−100 °C, demonstrating for gripping hot and cold objects. While monitoring human movements under direct sunlight, the temperature of a conventional sensor rose by 12.3 °C, whereas the sensor experienced an increase of only 0.3 °C. Therefore, this work presents a promising strategy for adapting to environments, enabling wearable electronics to function effectively in dynamic thermal conditions.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.