由智能热调节气凝胶实现的被动等温柔性传感器

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shenjie Zhong, Bohan Lu, Duan-Chao Wang, Brian Arianpour, Shaolei Wang, Haiyu Han, Junyi Yin, Hong Bao, Yina Liu, Zhen Wen, Yunlei Zhou
{"title":"由智能热调节气凝胶实现的被动等温柔性传感器","authors":"Shenjie Zhong,&nbsp;Bohan Lu,&nbsp;Duan-Chao Wang,&nbsp;Brian Arianpour,&nbsp;Shaolei Wang,&nbsp;Haiyu Han,&nbsp;Junyi Yin,&nbsp;Hong Bao,&nbsp;Yina Liu,&nbsp;Zhen Wen,&nbsp;Yunlei Zhou","doi":"10.1002/adma.202415386","DOIUrl":null,"url":null,"abstract":"<p>Environmentally induced sensor temperature fluctuations can distort the outputs of a sensor, reducing their stability during long-term health monitoring. Here, a passive isothermal flexible sensor is proposed by using hierarchical cellulose aerogel (HCA) as the top tribonegative layer, which allows the sensor to adapt dynamic thermal environments through both radiative cooling and heat insulation. The radiative cooling effect can cool down the temperatures of a sensor in summer, while the hollow microfibers in HCA provide ultralow thermal conductivity to reduce internal heat loss in winter. The prepared passive isothermal sensor is capable of maintaining the rated working temperature over an extensive temperature range of 0−100 °C, demonstrating for gripping hot and cold objects. While monitoring human movements under direct sunlight, the temperature of a conventional sensor rose by 12.3 °C, whereas the sensor experienced an increase of only 0.3 °C. Therefore, this work presents a promising strategy for adapting to environments, enabling wearable electronics to function effectively in dynamic thermal conditions.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 8","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Passive Isothermal Flexible Sensor Enabled by Smart Thermal-Regulating Aerogels\",\"authors\":\"Shenjie Zhong,&nbsp;Bohan Lu,&nbsp;Duan-Chao Wang,&nbsp;Brian Arianpour,&nbsp;Shaolei Wang,&nbsp;Haiyu Han,&nbsp;Junyi Yin,&nbsp;Hong Bao,&nbsp;Yina Liu,&nbsp;Zhen Wen,&nbsp;Yunlei Zhou\",\"doi\":\"10.1002/adma.202415386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Environmentally induced sensor temperature fluctuations can distort the outputs of a sensor, reducing their stability during long-term health monitoring. Here, a passive isothermal flexible sensor is proposed by using hierarchical cellulose aerogel (HCA) as the top tribonegative layer, which allows the sensor to adapt dynamic thermal environments through both radiative cooling and heat insulation. The radiative cooling effect can cool down the temperatures of a sensor in summer, while the hollow microfibers in HCA provide ultralow thermal conductivity to reduce internal heat loss in winter. The prepared passive isothermal sensor is capable of maintaining the rated working temperature over an extensive temperature range of 0−100 °C, demonstrating for gripping hot and cold objects. While monitoring human movements under direct sunlight, the temperature of a conventional sensor rose by 12.3 °C, whereas the sensor experienced an increase of only 0.3 °C. Therefore, this work presents a promising strategy for adapting to environments, enabling wearable electronics to function effectively in dynamic thermal conditions.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 8\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202415386\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202415386","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

环境引起的传感器温度波动会扭曲传感器的输出,降低其在长期健康监测期间的稳定性。本文提出了一种被动式等温柔性传感器,该传感器采用分层纤维素气凝胶(HCA)作为摩擦负层的顶部,使传感器能够通过辐射冷却和隔热来适应动态热环境。在夏季,辐射冷却效应可以降低传感器的温度,而在冬季,HCA中的中空微纤维提供超低导热系数,减少内部热量损失。所制备的无源等温传感器能够在0 - 100°C的广泛温度范围内保持额定工作温度,证明可以抓取热和冷物体。在阳光直射下监测人体运动时,传统传感器的温度上升了12.3°C,而传感器的温度仅上升了0.3°C。因此,这项工作提出了一种有前途的适应环境的策略,使可穿戴电子设备能够在动态热条件下有效地工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Passive Isothermal Flexible Sensor Enabled by Smart Thermal-Regulating Aerogels

Passive Isothermal Flexible Sensor Enabled by Smart Thermal-Regulating Aerogels

Passive Isothermal Flexible Sensor Enabled by Smart Thermal-Regulating Aerogels

Passive Isothermal Flexible Sensor Enabled by Smart Thermal-Regulating Aerogels

Passive Isothermal Flexible Sensor Enabled by Smart Thermal-Regulating Aerogels

Environmentally induced sensor temperature fluctuations can distort the outputs of a sensor, reducing their stability during long-term health monitoring. Here, a passive isothermal flexible sensor is proposed by using hierarchical cellulose aerogel (HCA) as the top tribonegative layer, which allows the sensor to adapt dynamic thermal environments through both radiative cooling and heat insulation. The radiative cooling effect can cool down the temperatures of a sensor in summer, while the hollow microfibers in HCA provide ultralow thermal conductivity to reduce internal heat loss in winter. The prepared passive isothermal sensor is capable of maintaining the rated working temperature over an extensive temperature range of 0−100 °C, demonstrating for gripping hot and cold objects. While monitoring human movements under direct sunlight, the temperature of a conventional sensor rose by 12.3 °C, whereas the sensor experienced an increase of only 0.3 °C. Therefore, this work presents a promising strategy for adapting to environments, enabling wearable electronics to function effectively in dynamic thermal conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信