{"title":"新型固定化菌群提高土壤中多环芳烃的修复效率:关键去除机制及主要驱动因素研究","authors":"Yuqian Li, Haomin Chen, Wei Li, Beidou Xi, Caihong Huang","doi":"10.1016/j.jhazmat.2025.137144","DOIUrl":null,"url":null,"abstract":"The remediation of sites co-contaminated with polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) poses challenges for efficient and ecofriendly restoration methods. In this study, three strains (<em>Pseudomonas sp.</em> PDC-1, <em>Rhodococcus sp.</em> RDC-1, and <em>Enterobacter sp.</em> EDC-1) were isolated from sites contaminated with PAHs and HMs. The constructed bacteria consortium was then immobilized using biochar, bentonite, and peat. The immobilized bacteria consortium (IBC) demonstrated efficient removal ability of phenanthrene (58.1%-73.4%) and benzo[a]pyrene (69.6%-83.5%) during 60 days. Additionally, the IBC decreased soil bacterial richness and diversity, but increased the relative abundance of Proteobacteria phylum and <em>Ochrobactrum</em> genus, which were capable of degrading PAHs. Soil microbial co-occurrence network with IBC was classified into three main modules, and 14 genera were identified as keystone taxa linked to PAHs degradation and HMs resistance. The IBC enhanced the dioxygenase metabolic pathways for PAHs degradation, including phthalic acid and salicylic acid pathways, which became the main driving factor affecting PAHs removal efficiency based on the structural equation modeling analysis. This study confirmed the potential application of the constructed IBC in the bioremediation of soil co-contaminated with PAHs-HMs, and provides insights into key removal mechanism and main driving factor of the enhanced elimination of PAHs.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"21 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel immobilized bacteria consortium enhanced remediation efficiency of PAHs in soil: Insights into key removal mechanism and main driving factor\",\"authors\":\"Yuqian Li, Haomin Chen, Wei Li, Beidou Xi, Caihong Huang\",\"doi\":\"10.1016/j.jhazmat.2025.137144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The remediation of sites co-contaminated with polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) poses challenges for efficient and ecofriendly restoration methods. In this study, three strains (<em>Pseudomonas sp.</em> PDC-1, <em>Rhodococcus sp.</em> RDC-1, and <em>Enterobacter sp.</em> EDC-1) were isolated from sites contaminated with PAHs and HMs. The constructed bacteria consortium was then immobilized using biochar, bentonite, and peat. The immobilized bacteria consortium (IBC) demonstrated efficient removal ability of phenanthrene (58.1%-73.4%) and benzo[a]pyrene (69.6%-83.5%) during 60 days. Additionally, the IBC decreased soil bacterial richness and diversity, but increased the relative abundance of Proteobacteria phylum and <em>Ochrobactrum</em> genus, which were capable of degrading PAHs. Soil microbial co-occurrence network with IBC was classified into three main modules, and 14 genera were identified as keystone taxa linked to PAHs degradation and HMs resistance. The IBC enhanced the dioxygenase metabolic pathways for PAHs degradation, including phthalic acid and salicylic acid pathways, which became the main driving factor affecting PAHs removal efficiency based on the structural equation modeling analysis. This study confirmed the potential application of the constructed IBC in the bioremediation of soil co-contaminated with PAHs-HMs, and provides insights into key removal mechanism and main driving factor of the enhanced elimination of PAHs.\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2025.137144\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137144","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
A novel immobilized bacteria consortium enhanced remediation efficiency of PAHs in soil: Insights into key removal mechanism and main driving factor
The remediation of sites co-contaminated with polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) poses challenges for efficient and ecofriendly restoration methods. In this study, three strains (Pseudomonas sp. PDC-1, Rhodococcus sp. RDC-1, and Enterobacter sp. EDC-1) were isolated from sites contaminated with PAHs and HMs. The constructed bacteria consortium was then immobilized using biochar, bentonite, and peat. The immobilized bacteria consortium (IBC) demonstrated efficient removal ability of phenanthrene (58.1%-73.4%) and benzo[a]pyrene (69.6%-83.5%) during 60 days. Additionally, the IBC decreased soil bacterial richness and diversity, but increased the relative abundance of Proteobacteria phylum and Ochrobactrum genus, which were capable of degrading PAHs. Soil microbial co-occurrence network with IBC was classified into three main modules, and 14 genera were identified as keystone taxa linked to PAHs degradation and HMs resistance. The IBC enhanced the dioxygenase metabolic pathways for PAHs degradation, including phthalic acid and salicylic acid pathways, which became the main driving factor affecting PAHs removal efficiency based on the structural equation modeling analysis. This study confirmed the potential application of the constructed IBC in the bioremediation of soil co-contaminated with PAHs-HMs, and provides insights into key removal mechanism and main driving factor of the enhanced elimination of PAHs.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.