具有复杂Te-Te相互作用的Ba16Si8Te44+δ和Ba6Si4Te6(Te3)3结构的合成与表征

IF 4.7 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Sweta Yadav, Swati, Manish K. Niranjan, Jai Prakash
{"title":"具有复杂Te-Te相互作用的Ba16Si8Te44+δ和Ba6Si4Te6(Te3)3结构的合成与表征","authors":"Sweta Yadav, Swati, Manish K. Niranjan, Jai Prakash","doi":"10.1021/acs.inorgchem.4c04189","DOIUrl":null,"url":null,"abstract":"Multinary tellurides with complex structures and narrow bandgaps are potential candidates for thermoelectric applications. Herein, we report the syntheses of two new ternary polytellurides, Ba<sub>16</sub>Si<sub>8</sub>Te<sub>44+δ</sub> and Ba<sub>6</sub>Si<sub>4</sub>Te<sub>6</sub>(Te<sub>3</sub>)<sub>3</sub>. Both title structures adopt unprecedented structure types. Interestingly, the Ba<sub>16</sub>Si<sub>8</sub>Te<sub>44+δ</sub> structure shows three types of polytelluride units: Te<sub>7</sub>, Te<sub>3</sub>, and Te<sub>2</sub>. Each of the two crystallographically unique Si atoms of the structure forms a slightly distorted tetrahedral SiTe<sub>4</sub> unit. The assignment of formal charges on the atoms of the Ba<sub>16</sub>Si<sub>8</sub>Te<sub>44+δ</sub> structure is difficult due to intermediate Te–Te interactions. The Ba<sub>6</sub>Si<sub>4</sub>Te<sub>6</sub>(Te<sub>3</sub>)<sub>3</sub> structure is also complex, including three Ba, two Si, and eight Te sites. The Si<sub>2</sub>Te<sub>6</sub> dimers and Te<sub>3</sub> trimers are the primary motifs of the Ba<sub>6</sub>Si<sub>4</sub>Te<sub>6</sub>(Te<sub>3</sub>)<sub>3</sub> structure, forming the anionic <i></i><span style=\"color: inherit;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;mfrac linethickness=\"0pt\"&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;&amp;#x221E;&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 1.13em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 0.925em; height: 0px; font-size: 122%;\"><span style=\"position: absolute; clip: rect(1.13em, 1000.87em, 2.718em, -999.997em); top: -2.2em; left: 0em;\"><span><span><span style=\"display: inline-block; position: relative; width: 0.72em; height: 0px; margin-right: 0.105em; margin-left: 0.105em;\"><span style=\"position: absolute; clip: rect(3.384em, 1000.31em, 4.152em, -999.997em); top: -4.454em; left: 50%; margin-left: -0.151em;\"><span><span style=\"font-size: 70.7%; font-family: MathJax_Main;\">2</span></span><span style=\"display: inline-block; width: 0px; height: 3.998em;\"></span></span><span style=\"position: absolute; clip: rect(3.537em, 1000.67em, 4.152em, -999.997em); top: -3.635em; left: 50%; margin-left: -0.356em;\"><span><span style=\"font-size: 70.7%; font-family: MathJax_Main;\">∞</span></span><span style=\"display: inline-block; width: 0px; height: 3.998em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.205em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.497em; border-left: 0px solid; width: 0px; height: 1.691em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac linethickness=\"0pt\"><mrow><mn>2</mn></mrow><mrow><mi>∞</mi></mrow></mfrac></math></span></span><script type=\"math/mml\"><math display=\"inline\"><mfrac linethickness=\"0pt\"><mrow><mn>2</mn></mrow><mrow><mi>∞</mi></mrow></mfrac></math></script>[Si<sub>4</sub>Te<sub>15</sub>]<sup>12–</sup> layers. Interestingly, the structure has two types of Te<sub>3</sub> trimers: a linear Te<sub>3</sub> unit with equidistant Te atoms and a bent Te<sub>3</sub> unit with two different Te–Te interactions. A polycrystalline Ba<sub>16</sub>Si<sub>8</sub>Te<sub>44.2</sub> sample shows a remarkably low total thermal conductivity (<i>κ<sub>tot</sub></i>) value of 0.41 Wm<sup>–1</sup> K<sup>–1</sup> at 623 K. Interestingly, an upturn below 60 K was revealed by a resistivity study of the sample. Moreover, DFT calculations were carried out to understand the theoretical electronic structures of the phases.","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"36 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Syntheses and Characterization of Ba16Si8Te44+δ and Ba6Si4Te6(Te3)3 Structures with Complex Te–Te Interactions\",\"authors\":\"Sweta Yadav, Swati, Manish K. Niranjan, Jai Prakash\",\"doi\":\"10.1021/acs.inorgchem.4c04189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multinary tellurides with complex structures and narrow bandgaps are potential candidates for thermoelectric applications. Herein, we report the syntheses of two new ternary polytellurides, Ba<sub>16</sub>Si<sub>8</sub>Te<sub>44+δ</sub> and Ba<sub>6</sub>Si<sub>4</sub>Te<sub>6</sub>(Te<sub>3</sub>)<sub>3</sub>. Both title structures adopt unprecedented structure types. Interestingly, the Ba<sub>16</sub>Si<sub>8</sub>Te<sub>44+δ</sub> structure shows three types of polytelluride units: Te<sub>7</sub>, Te<sub>3</sub>, and Te<sub>2</sub>. Each of the two crystallographically unique Si atoms of the structure forms a slightly distorted tetrahedral SiTe<sub>4</sub> unit. The assignment of formal charges on the atoms of the Ba<sub>16</sub>Si<sub>8</sub>Te<sub>44+δ</sub> structure is difficult due to intermediate Te–Te interactions. The Ba<sub>6</sub>Si<sub>4</sub>Te<sub>6</sub>(Te<sub>3</sub>)<sub>3</sub> structure is also complex, including three Ba, two Si, and eight Te sites. The Si<sub>2</sub>Te<sub>6</sub> dimers and Te<sub>3</sub> trimers are the primary motifs of the Ba<sub>6</sub>Si<sub>4</sub>Te<sub>6</sub>(Te<sub>3</sub>)<sub>3</sub> structure, forming the anionic <i></i><span style=\\\"color: inherit;\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"&gt;&lt;mfrac linethickness=\\\"0pt\\\"&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;&amp;#x221E;&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"position: relative;\\\" tabindex=\\\"0\\\"><nobr aria-hidden=\\\"true\\\"><span style=\\\"width: 1.13em; display: inline-block;\\\"><span style=\\\"display: inline-block; position: relative; width: 0.925em; height: 0px; font-size: 122%;\\\"><span style=\\\"position: absolute; clip: rect(1.13em, 1000.87em, 2.718em, -999.997em); top: -2.2em; left: 0em;\\\"><span><span><span style=\\\"display: inline-block; position: relative; width: 0.72em; height: 0px; margin-right: 0.105em; margin-left: 0.105em;\\\"><span style=\\\"position: absolute; clip: rect(3.384em, 1000.31em, 4.152em, -999.997em); top: -4.454em; left: 50%; margin-left: -0.151em;\\\"><span><span style=\\\"font-size: 70.7%; font-family: MathJax_Main;\\\">2</span></span><span style=\\\"display: inline-block; width: 0px; height: 3.998em;\\\"></span></span><span style=\\\"position: absolute; clip: rect(3.537em, 1000.67em, 4.152em, -999.997em); top: -3.635em; left: 50%; margin-left: -0.356em;\\\"><span><span style=\\\"font-size: 70.7%; font-family: MathJax_Main;\\\">∞</span></span><span style=\\\"display: inline-block; width: 0px; height: 3.998em;\\\"></span></span></span></span></span><span style=\\\"display: inline-block; width: 0px; height: 2.205em;\\\"></span></span></span><span style=\\\"display: inline-block; overflow: hidden; vertical-align: -0.497em; border-left: 0px solid; width: 0px; height: 1.691em;\\\"></span></span></nobr><span role=\\\"presentation\\\"><math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mfrac linethickness=\\\"0pt\\\"><mrow><mn>2</mn></mrow><mrow><mi>∞</mi></mrow></mfrac></math></span></span><script type=\\\"math/mml\\\"><math display=\\\"inline\\\"><mfrac linethickness=\\\"0pt\\\"><mrow><mn>2</mn></mrow><mrow><mi>∞</mi></mrow></mfrac></math></script>[Si<sub>4</sub>Te<sub>15</sub>]<sup>12–</sup> layers. Interestingly, the structure has two types of Te<sub>3</sub> trimers: a linear Te<sub>3</sub> unit with equidistant Te atoms and a bent Te<sub>3</sub> unit with two different Te–Te interactions. A polycrystalline Ba<sub>16</sub>Si<sub>8</sub>Te<sub>44.2</sub> sample shows a remarkably low total thermal conductivity (<i>κ<sub>tot</sub></i>) value of 0.41 Wm<sup>–1</sup> K<sup>–1</sup> at 623 K. Interestingly, an upturn below 60 K was revealed by a resistivity study of the sample. Moreover, DFT calculations were carried out to understand the theoretical electronic structures of the phases.\",\"PeriodicalId\":40,\"journal\":{\"name\":\"Inorganic Chemistry\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.inorgchem.4c04189\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.4c04189","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

具有复杂结构和窄带隙的多碲化物是热电应用的潜在候选者。本文报道了两种新型三元多碲化合物Ba16Si8Te44+δ和Ba6Si4Te6(Te3)3的合成。两种标题结构都采用了前所未有的结构类型。有趣的是,Ba16Si8Te44+δ结构显示出三种类型的多碲化物单元:Te7, Te3和Te2。这两个晶体结构独特的Si原子中的每一个都形成了一个稍微扭曲的四面体SiTe4单元。由于中间Te-Te相互作用,Ba16Si8Te44+δ结构原子上形式电荷的分配是困难的。Ba6Si4Te6(Te3)3结构也很复杂,包括3个Ba、2个Si和8个Te位点。Si2Te6二聚体和Te3三聚体是Ba6Si4Te6(Te3)3结构的主要基序,形成阴离子2∞2∞2∞[Si4Te15]12 -层。有趣的是,该结构有两种类型的Te3三聚体:具有等距Te原子的线性Te3单元和具有两种不同Te - Te相互作用的弯曲Te3单元。在623 K时,多晶Ba16Si8Te44.2样品的总导热系数(κtot)值为0.41 Wm-1 K - 1。有趣的是,样品的电阻率研究揭示了60 K以下的上升。此外,还进行了DFT计算以了解相的理论电子结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Syntheses and Characterization of Ba16Si8Te44+δ and Ba6Si4Te6(Te3)3 Structures with Complex Te–Te Interactions

Syntheses and Characterization of Ba16Si8Te44+δ and Ba6Si4Te6(Te3)3 Structures with Complex Te–Te Interactions
Multinary tellurides with complex structures and narrow bandgaps are potential candidates for thermoelectric applications. Herein, we report the syntheses of two new ternary polytellurides, Ba16Si8Te44+δ and Ba6Si4Te6(Te3)3. Both title structures adopt unprecedented structure types. Interestingly, the Ba16Si8Te44+δ structure shows three types of polytelluride units: Te7, Te3, and Te2. Each of the two crystallographically unique Si atoms of the structure forms a slightly distorted tetrahedral SiTe4 unit. The assignment of formal charges on the atoms of the Ba16Si8Te44+δ structure is difficult due to intermediate Te–Te interactions. The Ba6Si4Te6(Te3)3 structure is also complex, including three Ba, two Si, and eight Te sites. The Si2Te6 dimers and Te3 trimers are the primary motifs of the Ba6Si4Te6(Te3)3 structure, forming the anionic 2[Si4Te15]12– layers. Interestingly, the structure has two types of Te3 trimers: a linear Te3 unit with equidistant Te atoms and a bent Te3 unit with two different Te–Te interactions. A polycrystalline Ba16Si8Te44.2 sample shows a remarkably low total thermal conductivity (κtot) value of 0.41 Wm–1 K–1 at 623 K. Interestingly, an upturn below 60 K was revealed by a resistivity study of the sample. Moreover, DFT calculations were carried out to understand the theoretical electronic structures of the phases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信