Tristan da Câmara Santa Clara Gomes, Yanis Sassi, Dédalo Sanz-Hernández, Sachin Krishnia, Sophie Collin, Marie-Blandine Martin, Pierre Seneor, Vincent Cros, Julie Grollier, Nicolas Reyren
{"title":"带磁skyrmins的神经形态加权和","authors":"Tristan da Câmara Santa Clara Gomes, Yanis Sassi, Dédalo Sanz-Hernández, Sachin Krishnia, Sophie Collin, Marie-Blandine Martin, Pierre Seneor, Vincent Cros, Julie Grollier, Nicolas Reyren","doi":"10.1038/s41928-024-01303-z","DOIUrl":null,"url":null,"abstract":"<p>Integrating magnetic skyrmions into neuromorphic computing could help improve hardware efficiency and computational power. However, developing a scalable implementation of the weighted sum of neuron signals—a core operation in neural networks—has remained a challenge. Here we show that weighted sum operations can be performed in a compact, biologically inspired manner by using the non-volatile and particle-like characteristics of magnetic skyrmions that make them easily countable and summable. The skyrmions are electrically generated in numbers proportional to an input with an efficiency given by a non-volatile weight. The chiral particles are then directed using localized current injections to a location in which their presence is quantified through non-perturbative electrical measurements. Our experimental demonstration, which currently has two inputs, can be scaled to accommodate multiple inputs and outputs using a crossbar-array design, potentially nearing the energy efficiency observed in biological systems.</p>","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"96 1","pages":""},"PeriodicalIF":33.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuromorphic weighted sums with magnetic skyrmions\",\"authors\":\"Tristan da Câmara Santa Clara Gomes, Yanis Sassi, Dédalo Sanz-Hernández, Sachin Krishnia, Sophie Collin, Marie-Blandine Martin, Pierre Seneor, Vincent Cros, Julie Grollier, Nicolas Reyren\",\"doi\":\"10.1038/s41928-024-01303-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Integrating magnetic skyrmions into neuromorphic computing could help improve hardware efficiency and computational power. However, developing a scalable implementation of the weighted sum of neuron signals—a core operation in neural networks—has remained a challenge. Here we show that weighted sum operations can be performed in a compact, biologically inspired manner by using the non-volatile and particle-like characteristics of magnetic skyrmions that make them easily countable and summable. The skyrmions are electrically generated in numbers proportional to an input with an efficiency given by a non-volatile weight. The chiral particles are then directed using localized current injections to a location in which their presence is quantified through non-perturbative electrical measurements. Our experimental demonstration, which currently has two inputs, can be scaled to accommodate multiple inputs and outputs using a crossbar-array design, potentially nearing the energy efficiency observed in biological systems.</p>\",\"PeriodicalId\":19064,\"journal\":{\"name\":\"Nature Electronics\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":33.7000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41928-024-01303-z\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41928-024-01303-z","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Neuromorphic weighted sums with magnetic skyrmions
Integrating magnetic skyrmions into neuromorphic computing could help improve hardware efficiency and computational power. However, developing a scalable implementation of the weighted sum of neuron signals—a core operation in neural networks—has remained a challenge. Here we show that weighted sum operations can be performed in a compact, biologically inspired manner by using the non-volatile and particle-like characteristics of magnetic skyrmions that make them easily countable and summable. The skyrmions are electrically generated in numbers proportional to an input with an efficiency given by a non-volatile weight. The chiral particles are then directed using localized current injections to a location in which their presence is quantified through non-perturbative electrical measurements. Our experimental demonstration, which currently has two inputs, can be scaled to accommodate multiple inputs and outputs using a crossbar-array design, potentially nearing the energy efficiency observed in biological systems.
期刊介绍:
Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research.
The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society.
Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting.
In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.