水平方向上只有分数级磁扩散的二维无粘MHD方程的稳定性

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Yueyuan Zhong
{"title":"水平方向上只有分数级磁扩散的二维无粘MHD方程的稳定性","authors":"Yueyuan Zhong","doi":"10.1016/j.aml.2024.109446","DOIUrl":null,"url":null,"abstract":"This paper focuses on a special 2D magnetohydrodynamic (MHD) system with no viscosity and only fractional magnetic diffusion in the horizontal direction on the domain <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mrow><mml:mi>Ω</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mi mathvariant=\"double-struck\">T</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">×</mml:mo><mml:mi mathvariant=\"double-struck\">R</mml:mi></mml:mrow></mml:math> and <mml:math altimg=\"si2.svg\" display=\"inline\"><mml:mrow><mml:mi mathvariant=\"double-struck\">T</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mrow><mml:mo>[</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn><mml:mo>]</mml:mo></mml:mrow></mml:mrow></mml:math> be a periodic box. Due to the lack of the velocity dissipation, this stability problem is not trivial. Without the presence of a magnetic field, the fluid velocity is governed by the 2D incompressible Euler equation, and its solution grow rather rapidly. However, when coupled to the magnetic field in such an MHD system, our result in this paper then shows the stabilization effect. Moreover, we will derive the exponentially decay of solutions on horizontal direction.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"37 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of 2D inviscid MHD equations with only fractional magnetic diffusion in the horizontal direction\",\"authors\":\"Yueyuan Zhong\",\"doi\":\"10.1016/j.aml.2024.109446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on a special 2D magnetohydrodynamic (MHD) system with no viscosity and only fractional magnetic diffusion in the horizontal direction on the domain <mml:math altimg=\\\"si1.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi>Ω</mml:mi><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">=</mml:mo><mml:mi mathvariant=\\\"double-struck\\\">T</mml:mi><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">×</mml:mo><mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi></mml:mrow></mml:math> and <mml:math altimg=\\\"si2.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi mathvariant=\\\"double-struck\\\">T</mml:mi><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">=</mml:mo><mml:mrow><mml:mo>[</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn><mml:mo>]</mml:mo></mml:mrow></mml:mrow></mml:math> be a periodic box. Due to the lack of the velocity dissipation, this stability problem is not trivial. Without the presence of a magnetic field, the fluid velocity is governed by the 2D incompressible Euler equation, and its solution grow rather rapidly. However, when coupled to the magnetic field in such an MHD system, our result in this paper then shows the stabilization effect. Moreover, we will derive the exponentially decay of solutions on horizontal direction.\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.aml.2024.109446\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.aml.2024.109446","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种特殊的二维磁流体动力学(MHD)系统,该系统在Ω=T×R域上只有水平方向上的分数阶磁扩散,且T=[0,1]为周期方框。由于缺乏速度耗散,这一稳定性问题不容忽视。在没有磁场存在的情况下,流体速度由二维不可压缩欧拉方程控制,其解增长相当快。然而,当耦合到这样的MHD系统中的磁场时,我们的结果显示出稳定效果。此外,我们将推导出解在水平方向上的指数衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of 2D inviscid MHD equations with only fractional magnetic diffusion in the horizontal direction
This paper focuses on a special 2D magnetohydrodynamic (MHD) system with no viscosity and only fractional magnetic diffusion in the horizontal direction on the domain Ω=T×R and T=[0,1] be a periodic box. Due to the lack of the velocity dissipation, this stability problem is not trivial. Without the presence of a magnetic field, the fluid velocity is governed by the 2D incompressible Euler equation, and its solution grow rather rapidly. However, when coupled to the magnetic field in such an MHD system, our result in this paper then shows the stabilization effect. Moreover, we will derive the exponentially decay of solutions on horizontal direction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信