没有给定长度的Berge路径的线性三均匀超图

IF 1.2 1区 数学 Q1 MATHEMATICS
Ervin Győri , Nika Salia
{"title":"没有给定长度的Berge路径的线性三均匀超图","authors":"Ervin Győri ,&nbsp;Nika Salia","doi":"10.1016/j.jctb.2024.11.003","DOIUrl":null,"url":null,"abstract":"<div><div>Extensions of Erdős-Gallai Theorem for general hypergraphs are well studied. In this work, we prove the extension of Erdős-Gallai Theorem for linear hypergraphs. In particular, we show that the number of hyperedges in an <em>n</em>-vertex 3-uniform linear hypergraph, without a Berge path of length <em>k</em> as a subgraph is at most <span><math><mfrac><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>6</mn></mrow></mfrac><mi>n</mi></math></span> for <span><math><mi>k</mi><mo>≥</mo><mn>4</mn></math></span>. The bound is sharp for infinitely many <em>k</em> and <em>n</em>.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"171 ","pages":"Pages 36-48"},"PeriodicalIF":1.2000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear three-uniform hypergraphs with no Berge path of given length\",\"authors\":\"Ervin Győri ,&nbsp;Nika Salia\",\"doi\":\"10.1016/j.jctb.2024.11.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Extensions of Erdős-Gallai Theorem for general hypergraphs are well studied. In this work, we prove the extension of Erdős-Gallai Theorem for linear hypergraphs. In particular, we show that the number of hyperedges in an <em>n</em>-vertex 3-uniform linear hypergraph, without a Berge path of length <em>k</em> as a subgraph is at most <span><math><mfrac><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>6</mn></mrow></mfrac><mi>n</mi></math></span> for <span><math><mi>k</mi><mo>≥</mo><mn>4</mn></math></span>. The bound is sharp for infinitely many <em>k</em> and <em>n</em>.</div></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"171 \",\"pages\":\"Pages 36-48\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000960\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000960","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了Erdős-Gallai定理在一般超图中的推广。本文证明了线性超图Erdős-Gallai定理的推广。特别地,我们证明了在一个n顶点3-一致线性超图中,当k≥4时,不存在长度为k的Berge路径作为子图时,超边的数目最多为(k−1)6n。对于无穷多个k和n,边界很明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear three-uniform hypergraphs with no Berge path of given length
Extensions of Erdős-Gallai Theorem for general hypergraphs are well studied. In this work, we prove the extension of Erdős-Gallai Theorem for linear hypergraphs. In particular, we show that the number of hyperedges in an n-vertex 3-uniform linear hypergraph, without a Berge path of length k as a subgraph is at most (k1)6n for k4. The bound is sharp for infinitely many k and n.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信