完全多图的可定向正则嵌入

IF 1.2 1区 数学 Q1 MATHEMATICS
Štefan Gyürki, Soňa Pavlíková, Jozef Širáň
{"title":"完全多图的可定向正则嵌入","authors":"Štefan Gyürki,&nbsp;Soňa Pavlíková,&nbsp;Jozef Širáň","doi":"10.1016/j.jctb.2024.11.004","DOIUrl":null,"url":null,"abstract":"<div><div>An embedding of a graph on an orientable surface is <em>orientably-regular</em> (or <em>rotary</em>, in an equivalent terminology) if the group of orientation-preserving automorphisms of the embedding is transitive (and hence regular) on incident vertex-edge pairs of the graph. A classification of orientably-regular embeddings of complete graphs was obtained by L.D. James and G.A. Jones (1985) <span><span>[10]</span></span>, pointing out interesting connections to finite fields and Frobenius groups. By a combination of graph-theoretic methods and tools from combinatorial group theory we extend results of James and Jones to classification of orientably-regular embeddings of complete multigraphs with arbitrary edge-multiplicity.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"171 ","pages":"Pages 71-95"},"PeriodicalIF":1.2000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orientably-regular embeddings of complete multigraphs\",\"authors\":\"Štefan Gyürki,&nbsp;Soňa Pavlíková,&nbsp;Jozef Širáň\",\"doi\":\"10.1016/j.jctb.2024.11.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An embedding of a graph on an orientable surface is <em>orientably-regular</em> (or <em>rotary</em>, in an equivalent terminology) if the group of orientation-preserving automorphisms of the embedding is transitive (and hence regular) on incident vertex-edge pairs of the graph. A classification of orientably-regular embeddings of complete graphs was obtained by L.D. James and G.A. Jones (1985) <span><span>[10]</span></span>, pointing out interesting connections to finite fields and Frobenius groups. By a combination of graph-theoretic methods and tools from combinatorial group theory we extend results of James and Jones to classification of orientably-regular embeddings of complete multigraphs with arbitrary edge-multiplicity.</div></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"171 \",\"pages\":\"Pages 71-95\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000959\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000959","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

一个图在可定向曲面上的嵌入是可定向正则的(或旋转的,在一个等价的术语中),如果该嵌入的保持方向的自同构群在图的相关顶点边对上是可传递的(因此是正则的)。L.D. James和G.A. Jones(1985)[10]给出了完全图的可定向正则嵌入的分类,指出了与有限域和Frobenius群的有趣联系。结合图论方法和组合群论工具,将James和Jones的结果推广到具有任意边多重性的完全多图的可定向正则嵌入的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orientably-regular embeddings of complete multigraphs
An embedding of a graph on an orientable surface is orientably-regular (or rotary, in an equivalent terminology) if the group of orientation-preserving automorphisms of the embedding is transitive (and hence regular) on incident vertex-edge pairs of the graph. A classification of orientably-regular embeddings of complete graphs was obtained by L.D. James and G.A. Jones (1985) [10], pointing out interesting connections to finite fields and Frobenius groups. By a combination of graph-theoretic methods and tools from combinatorial group theory we extend results of James and Jones to classification of orientably-regular embeddings of complete multigraphs with arbitrary edge-multiplicity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信