具有非线性耦合的空间非齐次波动方程系统的时间周期解

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Jiayu Deng, Jianhua Liu, Shuguan Ji
{"title":"具有非线性耦合的空间非齐次波动方程系统的时间周期解","authors":"Jiayu Deng, Jianhua Liu, Shuguan Ji","doi":"10.1016/j.aml.2024.109448","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the existence of periodic solution for a system of spatially inhomogeneous wave equations with nonlinear couplings. The main contribution of this research lies in the fact that the coupled terms are nonlinear. For the periods having the form <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mrow><mml:mi>T</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mn>2</mml:mn><mml:mi>π</mml:mi><mml:mfrac><mml:mrow><mml:mn>2</mml:mn><mml:mi>a</mml:mi><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mi>b</mml:mi></mml:mrow></mml:mfrac></mml:mrow></mml:math> (<mml:math altimg=\"si2.svg\" display=\"inline\"><mml:mrow><mml:mi>a</mml:mi><mml:mo>,</mml:mo><mml:mi>b</mml:mi></mml:mrow></mml:math> are positive integers), by applying the dual variational method, we establish the existence of the time periodic solution under some Sturm–Liouville boundary conditions. To our knowledge, there is rarely papers focus on the existence of periodic solution for a system of spatially inhomogeneous wave equations with nonlinear couplings.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"3 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time periodic solution for a system of spatially inhomogeneous wave equations with nonlinear couplings\",\"authors\":\"Jiayu Deng, Jianhua Liu, Shuguan Ji\",\"doi\":\"10.1016/j.aml.2024.109448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the existence of periodic solution for a system of spatially inhomogeneous wave equations with nonlinear couplings. The main contribution of this research lies in the fact that the coupled terms are nonlinear. For the periods having the form <mml:math altimg=\\\"si1.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi>T</mml:mi><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">=</mml:mo><mml:mn>2</mml:mn><mml:mi>π</mml:mi><mml:mfrac><mml:mrow><mml:mn>2</mml:mn><mml:mi>a</mml:mi><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mi>b</mml:mi></mml:mrow></mml:mfrac></mml:mrow></mml:math> (<mml:math altimg=\\\"si2.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi>a</mml:mi><mml:mo>,</mml:mo><mml:mi>b</mml:mi></mml:mrow></mml:math> are positive integers), by applying the dual variational method, we establish the existence of the time periodic solution under some Sturm–Liouville boundary conditions. To our knowledge, there is rarely papers focus on the existence of periodic solution for a system of spatially inhomogeneous wave equations with nonlinear couplings.\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.aml.2024.109448\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.aml.2024.109448","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

研究一类具有非线性耦合的空间非齐次波动方程系统周期解的存在性。本研究的主要贡献在于耦合项是非线性的。对于形式为T=2π2a−1b (a,b为正整数)的周期,应用对偶变分方法,建立了Sturm-Liouville边界条件下时间周期解的存在性。据我们所知,很少有论文关注具有非线性耦合的空间非齐次波动方程系统周期解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time periodic solution for a system of spatially inhomogeneous wave equations with nonlinear couplings
This paper is concerned with the existence of periodic solution for a system of spatially inhomogeneous wave equations with nonlinear couplings. The main contribution of this research lies in the fact that the coupled terms are nonlinear. For the periods having the form T=2π2a1b (a,b are positive integers), by applying the dual variational method, we establish the existence of the time periodic solution under some Sturm–Liouville boundary conditions. To our knowledge, there is rarely papers focus on the existence of periodic solution for a system of spatially inhomogeneous wave equations with nonlinear couplings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信