{"title":"具有非线性耦合的空间非齐次波动方程系统的时间周期解","authors":"Jiayu Deng, Jianhua Liu, Shuguan Ji","doi":"10.1016/j.aml.2024.109448","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the existence of periodic solution for a system of spatially inhomogeneous wave equations with nonlinear couplings. The main contribution of this research lies in the fact that the coupled terms are nonlinear. For the periods having the form <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mrow><mml:mi>T</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mn>2</mml:mn><mml:mi>π</mml:mi><mml:mfrac><mml:mrow><mml:mn>2</mml:mn><mml:mi>a</mml:mi><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mi>b</mml:mi></mml:mrow></mml:mfrac></mml:mrow></mml:math> (<mml:math altimg=\"si2.svg\" display=\"inline\"><mml:mrow><mml:mi>a</mml:mi><mml:mo>,</mml:mo><mml:mi>b</mml:mi></mml:mrow></mml:math> are positive integers), by applying the dual variational method, we establish the existence of the time periodic solution under some Sturm–Liouville boundary conditions. To our knowledge, there is rarely papers focus on the existence of periodic solution for a system of spatially inhomogeneous wave equations with nonlinear couplings.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"3 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time periodic solution for a system of spatially inhomogeneous wave equations with nonlinear couplings\",\"authors\":\"Jiayu Deng, Jianhua Liu, Shuguan Ji\",\"doi\":\"10.1016/j.aml.2024.109448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the existence of periodic solution for a system of spatially inhomogeneous wave equations with nonlinear couplings. The main contribution of this research lies in the fact that the coupled terms are nonlinear. For the periods having the form <mml:math altimg=\\\"si1.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi>T</mml:mi><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">=</mml:mo><mml:mn>2</mml:mn><mml:mi>π</mml:mi><mml:mfrac><mml:mrow><mml:mn>2</mml:mn><mml:mi>a</mml:mi><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mi>b</mml:mi></mml:mrow></mml:mfrac></mml:mrow></mml:math> (<mml:math altimg=\\\"si2.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi>a</mml:mi><mml:mo>,</mml:mo><mml:mi>b</mml:mi></mml:mrow></mml:math> are positive integers), by applying the dual variational method, we establish the existence of the time periodic solution under some Sturm–Liouville boundary conditions. To our knowledge, there is rarely papers focus on the existence of periodic solution for a system of spatially inhomogeneous wave equations with nonlinear couplings.\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.aml.2024.109448\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.aml.2024.109448","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Time periodic solution for a system of spatially inhomogeneous wave equations with nonlinear couplings
This paper is concerned with the existence of periodic solution for a system of spatially inhomogeneous wave equations with nonlinear couplings. The main contribution of this research lies in the fact that the coupled terms are nonlinear. For the periods having the form T=2π2a−1b (a,b are positive integers), by applying the dual variational method, we establish the existence of the time periodic solution under some Sturm–Liouville boundary conditions. To our knowledge, there is rarely papers focus on the existence of periodic solution for a system of spatially inhomogeneous wave equations with nonlinear couplings.
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.