基于临界主应力方向的无线性变换各向异性韧性断裂模型

IF 7.1 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Peihua Zhu, Weigang Zhao, Zhiyang Xie, Shitong Chen
{"title":"基于临界主应力方向的无线性变换各向异性韧性断裂模型","authors":"Peihua Zhu, Weigang Zhao, Zhiyang Xie, Shitong Chen","doi":"10.1016/j.ijmecsci.2024.109914","DOIUrl":null,"url":null,"abstract":"The linear transformation has been successfully used to characterize the anisotropic ductile fracture, whereas the physical background of the transformed anisotropic stress state or the equivalent plastic strain becomes somewhat vague. This deficiency in the linear-transformation model might overlook the microscopic mechanisms of the anisotropic ductile fracture related to various stress states and loading direction. Therefore, this paper proposes an advanced linear-transformation-free anisotropic ductile fracture modeling framework that is dependent on stress triaxiality and the Lode angle, two state variables intimately related to microscopic fracture mechanisms. Notably, the model introduces the critical principal stress direction to account for the dependency on loading direction. The stress state variables and principal stress direction correspond to the geometry and sampling direction straightforwardly, which significantly facilitates the calibration of fracture parameters. Furthermore, compared to traditional linear-transformation-based anisotropic models, the proposed model is underpinned by a clear physical basis and accurately captures the relationships between triaxiality, Lode angle and material ductility with respect to varying loading directions. This model has been calibrated and validated based on the testing program on aluminum alloy 6061-T6 rolled plates under various stress states, considering both in-plane and out-of-plane anisotropies. The accurate prediction in terms of the softening initiation and failure modes for all testing cases demonstrate the validity of the proposed anisotropic ductile fracture model, as evidenced by the low averaged percentage of damage indicator at softening initiation at 4.6 %.","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"25 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear-transformation-free anisotropic ductile fracture model based on critical principal-stress-direction\",\"authors\":\"Peihua Zhu, Weigang Zhao, Zhiyang Xie, Shitong Chen\",\"doi\":\"10.1016/j.ijmecsci.2024.109914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The linear transformation has been successfully used to characterize the anisotropic ductile fracture, whereas the physical background of the transformed anisotropic stress state or the equivalent plastic strain becomes somewhat vague. This deficiency in the linear-transformation model might overlook the microscopic mechanisms of the anisotropic ductile fracture related to various stress states and loading direction. Therefore, this paper proposes an advanced linear-transformation-free anisotropic ductile fracture modeling framework that is dependent on stress triaxiality and the Lode angle, two state variables intimately related to microscopic fracture mechanisms. Notably, the model introduces the critical principal stress direction to account for the dependency on loading direction. The stress state variables and principal stress direction correspond to the geometry and sampling direction straightforwardly, which significantly facilitates the calibration of fracture parameters. Furthermore, compared to traditional linear-transformation-based anisotropic models, the proposed model is underpinned by a clear physical basis and accurately captures the relationships between triaxiality, Lode angle and material ductility with respect to varying loading directions. This model has been calibrated and validated based on the testing program on aluminum alloy 6061-T6 rolled plates under various stress states, considering both in-plane and out-of-plane anisotropies. The accurate prediction in terms of the softening initiation and failure modes for all testing cases demonstrate the validity of the proposed anisotropic ductile fracture model, as evidenced by the low averaged percentage of damage indicator at softening initiation at 4.6 %.\",\"PeriodicalId\":56287,\"journal\":{\"name\":\"International Journal of Mechanical Sciences\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijmecsci.2024.109914\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ijmecsci.2024.109914","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

线性转换已成功地用于表征各向异性韧性断裂,但转换后的各向异性应力状态或等效塑性应变的物理背景模糊不清。线性转换模型的这一缺陷可能忽略了与不同应力状态和加载方向有关的各向异性韧性断裂的微观机制。因此,本文提出了一种先进的无线性变换的各向异性韧性裂缝建模框架,该框架依赖于应力三轴性和Lode角这两个与微观断裂机制密切相关的状态变量。值得注意的是,该模型引入了临界主应力方向,以考虑对加载方向的依赖。应力状态变量和主应力方向与几何形状和采样方向直接对应,大大方便了裂缝参数的标定。此外,与传统的基于线性变换的各向异性模型相比,该模型具有清晰的物理基础,能够准确捕捉不同加载方向下三轴性、Lode角和材料延性之间的关系。基于6061-T6铝合金轧制板在不同应力状态下的面内、面外各向异性试验程序,对该模型进行了标定和验证。在软化起裂和破坏模式方面,各向异性韧性断裂模型预测准确,软化起裂损伤指标的平均百分比较低,为4.6%,证明了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear-transformation-free anisotropic ductile fracture model based on critical principal-stress-direction
The linear transformation has been successfully used to characterize the anisotropic ductile fracture, whereas the physical background of the transformed anisotropic stress state or the equivalent plastic strain becomes somewhat vague. This deficiency in the linear-transformation model might overlook the microscopic mechanisms of the anisotropic ductile fracture related to various stress states and loading direction. Therefore, this paper proposes an advanced linear-transformation-free anisotropic ductile fracture modeling framework that is dependent on stress triaxiality and the Lode angle, two state variables intimately related to microscopic fracture mechanisms. Notably, the model introduces the critical principal stress direction to account for the dependency on loading direction. The stress state variables and principal stress direction correspond to the geometry and sampling direction straightforwardly, which significantly facilitates the calibration of fracture parameters. Furthermore, compared to traditional linear-transformation-based anisotropic models, the proposed model is underpinned by a clear physical basis and accurately captures the relationships between triaxiality, Lode angle and material ductility with respect to varying loading directions. This model has been calibrated and validated based on the testing program on aluminum alloy 6061-T6 rolled plates under various stress states, considering both in-plane and out-of-plane anisotropies. The accurate prediction in terms of the softening initiation and failure modes for all testing cases demonstrate the validity of the proposed anisotropic ductile fracture model, as evidenced by the low averaged percentage of damage indicator at softening initiation at 4.6 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mechanical Sciences
International Journal of Mechanical Sciences 工程技术-工程:机械
CiteScore
12.80
自引率
17.80%
发文量
769
审稿时长
19 days
期刊介绍: The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering. The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture). Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content. In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信