超越奈奎斯特极限的抗锯齿超表面

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Seokwoo Kim, Joohoon Kim, Kyungtae Kim, Minsu Jeong, Junsuk Rho
{"title":"超越奈奎斯特极限的抗锯齿超表面","authors":"Seokwoo Kim, Joohoon Kim, Kyungtae Kim, Minsu Jeong, Junsuk Rho","doi":"10.1038/s41467-024-55095-z","DOIUrl":null,"url":null,"abstract":"<p>Sampling is a pivotal element in the design of metasurfaces, enabling a broad spectrum of applications. Despite its flexibility, sampling can result in reduced efficiency and unintended diffractions, which are more pronounced at high numerical aperture or shorter wavelengths, e.g. ultraviolet spectrum. Prevailing metasurface research has often relied on the conventional Nyquist sampling theorem to assess sampling appropriateness, however, our findings reveal that the Nyquist criterion is insufficient guidance for sampling in metasurface. Specifically, we find that the performance of a metasurface is significantly correlated to the geometric relationship between the spectrum morphology and sampling lattice. Based on lattice-based diffraction analysis, we demonstrate several anti-aliasing strategies from visible to ultraviolet regimes. These approaches significantly reduce aliasing phenomena occurring in high numerical aperture metasurfaces. Our findings not only deepen the understanding in phase gradient metasurface but also pave the way for high numerical aperture operation down to the ultraviolet spectrum.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"14 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-aliased metasurfaces beyond the Nyquist limit\",\"authors\":\"Seokwoo Kim, Joohoon Kim, Kyungtae Kim, Minsu Jeong, Junsuk Rho\",\"doi\":\"10.1038/s41467-024-55095-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sampling is a pivotal element in the design of metasurfaces, enabling a broad spectrum of applications. Despite its flexibility, sampling can result in reduced efficiency and unintended diffractions, which are more pronounced at high numerical aperture or shorter wavelengths, e.g. ultraviolet spectrum. Prevailing metasurface research has often relied on the conventional Nyquist sampling theorem to assess sampling appropriateness, however, our findings reveal that the Nyquist criterion is insufficient guidance for sampling in metasurface. Specifically, we find that the performance of a metasurface is significantly correlated to the geometric relationship between the spectrum morphology and sampling lattice. Based on lattice-based diffraction analysis, we demonstrate several anti-aliasing strategies from visible to ultraviolet regimes. These approaches significantly reduce aliasing phenomena occurring in high numerical aperture metasurfaces. Our findings not only deepen the understanding in phase gradient metasurface but also pave the way for high numerical aperture operation down to the ultraviolet spectrum.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-55095-z\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55095-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

采样是元表面设计中的关键元素,可以实现广泛的应用。尽管它的灵活性,采样可能导致效率降低和意外的衍射,这是更明显的在高数值孔径或较短的波长,如紫外光谱。主流的超表面研究通常依赖于传统的奈奎斯特采样定理来评估采样的适当性,然而,我们的研究结果表明奈奎斯特准则对超表面的采样指导不足。具体来说,我们发现超表面的性能与光谱形态和采样点阵之间的几何关系密切相关。基于晶格衍射分析,我们展示了几种从可见光到紫外线的抗混叠策略。这些方法显著减少了高数值孔径超表面出现的混叠现象。我们的发现不仅加深了对相梯度超表面的理解,而且为高数值孔径操作到紫外光谱铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Anti-aliased metasurfaces beyond the Nyquist limit

Anti-aliased metasurfaces beyond the Nyquist limit

Sampling is a pivotal element in the design of metasurfaces, enabling a broad spectrum of applications. Despite its flexibility, sampling can result in reduced efficiency and unintended diffractions, which are more pronounced at high numerical aperture or shorter wavelengths, e.g. ultraviolet spectrum. Prevailing metasurface research has often relied on the conventional Nyquist sampling theorem to assess sampling appropriateness, however, our findings reveal that the Nyquist criterion is insufficient guidance for sampling in metasurface. Specifically, we find that the performance of a metasurface is significantly correlated to the geometric relationship between the spectrum morphology and sampling lattice. Based on lattice-based diffraction analysis, we demonstrate several anti-aliasing strategies from visible to ultraviolet regimes. These approaches significantly reduce aliasing phenomena occurring in high numerical aperture metasurfaces. Our findings not only deepen the understanding in phase gradient metasurface but also pave the way for high numerical aperture operation down to the ultraviolet spectrum.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信